Activated carbons from Baru (Dipteryx alata Vog.) waste impregnated with copper oxide: application in the postharvest preservation of bananas
DOI:
https://doi.org/10.5327/fst.507Palavras-chave:
adsorbents, agro-industrial waste, ethylene, postharvest qualityResumo
Banana is an agricultural commodity cultivated extensively in tropical and subtropical regions with consumption demand worldwide. During the ripening process, several biochemical reactions occur that are linked to the production of ethylene, which determines the shelf life and quality of the fruit. Ethylene can promote excessive ripening and decay of fruits and vegetables, even at very low concentrations. Therefore, an ethylene control strategy needs to be developed to address this challenge. This study aimed to evaluate the effects of using activated carbon from baru (Dipteryx alata Vog.) waste, impregnated with copper oxide, as potentially efficient materials for eliminating ethylene and maintaining postharvest quality of bananas. The developed adsorbent materials showed high ethylene adsorption capacity, validating their potential application in real storage conditions for climacteric fruits. The evaluation of quality attributes, like color, firmness, weight loss, total titratable acidity, total soluble solids, and total soluble solids/total titratable acidity ratio, confirmed the effectiveness of activated carbon and activated carbon impregnated with copper oxide in delaying the ripening and senescence process compared to bananas in the control group. The results of this study contribute to the development of ethylene adsorbent materials that combine sustainability and efficiency, with promising applications in the food industry to reduce postharvest losses.
Downloads
Referências
Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H., & Al-Attabi, Z. (2023). Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends in Food Science & Technology, 134, 177–191. https://doi.org/10.1016/j.tifs.2023.03.003
Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055. https://doi.org/10.1093/jxb/erf072
Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality. Horticulturae, 10(8), Article 840. https://doi.org/10.3390/horticulturae10080840
Barros, H. E. A., Natarelli, C. V. L., Santos, I. A., Soares, L. S., Pereira, E. P., Oliveira, J. P. L., Machado, G. G. L., Carvalho, E. E. N., Oliveira, J. E., Franco, M., & Vilas Boas, E. V. B. (2024). A new nano-sachet manufactured by solution blow spinning to retard ripening of bananas using biodegradable nanostructured polymeric mats emitting 1-methylcyclopropene. Postharvest Biology and Technology, 214, Article 112993. https://doi.org/10.1016/j.postharvbio.2024.112993
Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and Fruit Ripening. Journal of Plant Growth Regulation, 26(2), 143–159. https://doi.org/10.1007/s00344-007-9002-y
Borges, C. V., Amorim, E. P., Leonel, M., Gomez, H. A. G., Santos, T. P. R., Ledo, C. A. S., Belin, M. A. F., Almeida, S. L., Minatel, I. O., & Lima, G. P. P. (2019). Post-harvest physicochemical profile and bioactive compounds of 19 bananas and plantains genotypes. Bragantia, 78(2), 284–296. https://doi.org/10.1590/1678-4499.20180252
Bruijn, J., Gómez, A., Loyola, C., Melín, P., Solar, V., Abreu, N., Azzolina-Jury, F., & Valdés, H. (2020). Use of a Copper- and Zinc-Modified Natural Zeolite to Improve Ethylene Removal and Postharvest Quality of Tomato Fruit. Crystals, 10(6), Article 471. https://doi.org/10.3390/cryst10060471
Charoensuk, P., Chaiwong, S., Suwunwong, T., Halley, P. J., & Suwantong, O. (2024). Preparation and utilization of biochar from agricultural wastes as ethylene absorber for ‘Gros Michel’ banana ripening. Industrial Crops and Products, 222(4), Article 119860. https://doi.org/10.1016/j.indcrop.2024.119860
Coltro, L., & Karaski, T. U. (2019). Environmental indicators of banana production in Brazil: Cavendish and Prata varieties. Journal of Cleaner Production, 207, 363–378. https://doi.org/10.1016/j.jclepro.2018.09.258
Dai, J., Xu, Z., Zhang, X., Fang, Z., Zhu, J., Kang, T., Xu, Y., Hu, Y., Cao, L., & Zhao, C. (2025). PpNAP4 and ethylene act in a regulatory loop to modulate peach fruit ripening and softening. International Journal of Biological Macromolecules, 291, Article 138791. https://doi.org/10.1016/j.ijbiomac.2024.138791
Fathizadeh, Z., Aboonajmi, M., & Hassan-Beygi, S. R. (2021). Nondestructive methods for determining the firmness of apple fruit flesh. Information Processing in Agriculture, 8(4), 515–527. https://doi.org/10.1016/j.inpa.2020.12.002
Fonseca, J. M., Pabón, N. Y. L., Nandi, L. G., Valencia, G. A., Moreira, R. F. P. M., & Monteiro, A. R. (2021). Gelatin-TiO2-coated expanded polyethylene foam nets as ethylene scavengers for fruit postharvest application. Postharvest Biology and Technology, 180, Article 111602. https://doi.org/10.1016/j.postharvbio.2021.111602
Gierson, D., & Kader, A. A. (1986). Fruit ripening and quality. In J. G. Atherton & J. Rudich (Orgs.), The Tomato Crop: A scientific basis for improvement (1st ed., pp. 241–280). Springer. https://doi.org/10.1007/978-94-009-3137-4_6
González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82(1), 1393–1414. https://doi.org/10.1016/j.rser.2017.04.117
Gupta, S. A., Vishesh, Y., Sarvshrestha, N., Bhardwaj, A. S., Kumar, P. A., Topare, N. S., Raut-Jadhav, S., Bokil, S. A., & Khan, A. (2022). Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent. Materials Today: Proceedings, 57(4), 1500–1508. https://doi.org/10.1016/j.matpr.2021.12.044
Hu, W., Yang, H., Tie, W., Yan, Y., Ding, Z., Liu, Y., Wu, C., Wang, J., Reiter, R. J., Tan, D.-X., Shi, H., Xu, B., & Jin, Z. (2017). Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality. Journal of Agricultural and Food Chemistry, 65(46), 9987–9994. https://doi.org/10.1021/acs.jafc.7b03354
Kamdee, C., Ketsa, S., & van Doorn, W. G. (2009). Effect of heat treatment on ripening and early peel spotting in cv. Sucrier banana. Postharvest Biology and Technology, 52(3), 288–293. https://doi.org/10.1016/j.postharvbio.2008.12.003
Ma, W., Zhang, Y., Chen, L., Xie, X., Yuan, S., Qiu, Z., Zhu, G., & Guo, J. (2024). A novel ZnO-TiO2-Bi2WO6/Carboxymethyl chitosan composite with high antimicrobial activity and visible-light catalytic degradation of ethylene towards banana preservation in hot and humid environments. International Journal of Biological Macromolecules, 281(4), Article 136559. https://doi.org/10.1016/j.ijbiomac.2024.136559
Marsh, H., & Rodríguez-Reinoso, F. (2006). CHAPTER 4 - Characterization of Activated Carbon. In H. Marsh & F. Rodríguez-Reinoso (Eds.), Activated Carbon (pp. 143–242). Elsevier. https://doi.org/10.1016/B978-008044463-5/50018-2
Motta, G. E., Angonese, M., Valencia, G. A., & Ferreira, S. R. S. (2022). Beyond the peel: Biorefinery approach of other banana residues as a springboard to achieve the United Nations’ sustainable development goals. Sustainable Chemistry and Pharmacy, 30, Article 100893. https://doi.org/10.1016/j.scp.2022.100893
Mowlah, G., Takano, K., Kamoi, I., & Obara, T. (1983). Browning Phenomenon by Banana Polyphenoloxidases. Nippon Shokuhin Kogyo Gakkaishi, 30(4), 245–251. https://doi.org/10.3136/nskkk1962.30.245
Murmu, S. B., & Mishra, H. N. (2018). Post-harvest shelf-life of banana and guava: Mechanisms of common degradation problems and emerging counteracting strategies. Innovative Food Science & Emerging Technologies, 49, 20–30. https://doi.org/10.1016/j.ifset.2018.07.011
Nooun, P., Chueangchayaphan, N., Ummarat, N., & Chueangchayaphan, W. (2023). Fabrication and properties of natural rubber/rice starch/activated carbon biocomposite-based packing foam sheets and their application to shelf life extension of ‘Hom Thong’ banana. Industrial Crops and Products, 195, Article 116409. https://doi.org/10.1016/j.indcrop.2023.116409
Oliveira, A. C. J., Rodrigues, C. A. P., Almeida, M. C., Mársico, E. T., Scalize, P. S., Oliveira, T. F., Solar, V. A., & Valdés, H. (2024). Ethylene Elimination Using Activated Carbons Obtained from Baru (Dipteryx alata vog.) Waste and Impregnated with Copper Oxide. Molecules, 29(12), Article 2717. https://doi.org/10.3390/molecules29122717
Osorio, S., & Fernie, A. R. (2013). Biochemistry of Fruit Ripening. In G. B. Seymour, M. Poole, J. J. Giovannoni, & G. A. Tucker (Eds.), The Molecular Biology and Biochemistry of Fruit Ripening (pp. 1–19). John Wiley & Sons. https://doi.org/10.1002/9781118593714.ch1
Patil, H., Naik, R., & Paramasivam, S. K. (2024). Utilization of banana crop ligno-cellulosic waste for sustainable development of biomaterials and nanocomposites. International Journal of Biological Macromolecules, 282(3), Article 137065. https://doi.org/10.1016/j.ijbiomac.2024.137065
Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit Ripening Phenomena–An Overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841
Queiroz, C., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361–375. https://doi.org/10.1080/87559120802089332
Ringer, T., Damerow, L., & Blanke, M. M. (2018). Non-invasive determination of surface features of banana during ripening. Journal of Food Science and Technology, 55(10), 4197–4203. https://doi.org/10.1007/s13197-018-3352-2
Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292. https://doi.org/10.1016/S0925-5214(98)00091-X
Shenoy, S., Pathak, N., Molins, A., Toncheva, A., Schouw, T., Hemberg, A., Laoutid, F., & Mahajan, P. V. (2022). Impact of relative humidity on ethylene removal kinetics of different scavenging materials for fresh produce industry. Postharvest Biology and Technology, 188, Article 111881. https://doi.org/10.1016/j.postharvbio.2022.111881
Shinga, M. H., Kaseke, T., Pfukwa, T. M., & Fawole, O. A. (2025). Optimization of glycerol and cellulose nanofiber concentrations in Opuntia ficus-indica mucilage films functionalized with pomegranate peel extract for postharvest preservation of banana. Food Packaging and Shelf Life, 47, Article 101428. https://doi.org/10.1016/j.fpsl.2024.101428
Singh, S. K., & Dhepe, P. L. (2016). Isolation of lignin by organosolv process from different varieties of rice husk: Understanding their physical and chemical properties. Bioresource Technology, 221, 310–317. https://doi.org/10.1016/j.biortech.2016.09.042
Tepamatr, P. (2023). Efficacy of a palladium-modified activated carbon in improving ethylene removal to delay the ripening of Gros Michel banana. Journal of Agriculture and Food Research, 12, Article 100561. https://doi.org/10.1016/j.jafr.2023.100561
Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14. https://doi.org/10.1016/j.postharvbio.2007.09.004
Tucker, G., Yin, X., Zhang, A., Wang, M., Zhu, Q., Liu, X., Xie, X., Chen, K., & Grierson, D. (2017). Ethylene† and fruit softening. Food Quality and Safety, 1(4), 253–267. https://doi.org/10.1093/fqsafe/fyx024
Wang, H., Zhou, X., Hu, W., Hu, X., Murtaza, A., Wang, L., Xu, X., & Pan, S. (2024). Mechanism of the Abnormal Softening of Banana Pulp Induced by High Temperature and High Humidity During Postharvest Storage. Food and Bioprocess Technology, 17(11), 3577–3587. https://doi.org/10.1007/s11947-024-03335-x
Wang, S.-H., Hwang, Y.-K., Choi, S. W., Yuan, X., Lee, K. B., & Chang, F.-C. (2020). Developing self-activated lignosulfonate-based porous carbon material for ethylene adsorption. Journal of the Taiwan Institute of Chemical Engineers, 115, 315–320. https://doi.org/10.1016/j.jtice.2020.10.017
Wang, T., Song, Y., Lai, L., Fang, D., Li, W., Cao, F., & Su, E. (2024). Sustaining freshness: Critical review of physiological and biochemical transformations and storage techniques in postharvest bananas. Food Packaging and Shelf Life, 46, Article 101386. https://doi.org/10.1016/j.fpsl.2024.101386
Wei, H., Li, L., Zhang, T., Seidi, F., & Xiao, H. (2023). Platinum-loaded dendritic mesoporous silica as novel ethylene scavenger to extend shelf life of banana (Musa nana). Food Chemistry, 424, Article 136415. https://doi.org/10.1016/j.foodchem.2023.136415
Xiao, F., Xiao, Y., Ji, W., Li, L., Zhang, Y., Chen, M., & Wang, H. (2024). Photocatalytic chitosan-based bactericidal films incorporated with WO3/AgBr/Ag and activated carbon for ethylene removal and application to banana preservation. Carbohydrate Polymers, 328, Article 121681. https://doi.org/10.1016/j.carbpol.2023.121681
Xie, J., Wang, R., Li, Y., Ni, Z., Situ, W., Ye, S., & Song, X. (2022). A novel Ag2O-TiO2-Bi2WO6/polyvinyl alcohol composite film with ethylene photocatalytic degradation performance towards banana preservation. Food Chemistry, 375, Article 131708. https://doi.org/10.1016/j.foodchem.2021.131708
Yun, Z., Li, T., Gao, H., Zhu, H., Gupta, V. K., Jiang, Y., & Duan, X. (2019). Integrated Transcriptomic, Proteomic, and Metabolomics Analysis Reveals Peel Ripening of Harvested Banana under Natural Condition. Biomolecules, 9(5), Article 167. https://doi.org/10.3390/biom9050167
Zhang, S., Chen, Q., Hao, M., Zhang, Y., Ren, X., Cao, F., Zhang, L., Sun, Q., & Wennersten, R. (2023). Effect of functional groups on VOCs adsorption by activated carbon: DFT study. Surface Science, 736, Article 122352. https://doi.org/10.1016/j.susc.2023.122352
Zhang, X., Gao, B., Creamer, A. E., Cao, C., & Li, Y. (2017). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013
Zhu, X., Luo, J., Li, Q., Li, J., Liu, T., Wang, R., Chen, W., & Li, X. (2018). Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 146, 68–78. https://doi.org/10.1016/j.postharvbio.2018.08.015