Activated carbons from Baru (Dipteryx alata Vog.) waste impregnated with copper oxide: application in the postharvest preservation of bananas

Authors

DOI:

https://doi.org/10.5327/fst.507

Keywords:

adsorbents, agro-industrial waste, ethylene, postharvest quality

Abstract

Banana is an agricultural commodity cultivated extensively in tropical and subtropical regions with consumption demand worldwide. During the ripening process, several biochemical reactions occur that are linked to the production of ethylene, which determines the shelf life and quality of the fruit. Ethylene can promote excessive ripening and decay of fruits and vegetables, even at very low concentrations. Therefore, an ethylene control strategy needs to be developed to address this challenge. This study aimed to evaluate the effects of using activated carbon from baru (Dipteryx alata Vog.) waste, impregnated with copper oxide, as potentially efficient materials for eliminating ethylene and maintaining postharvest quality of bananas. The developed adsorbent materials showed high ethylene adsorption capacity, validating their potential application in real storage conditions for climacteric fruits. The evaluation of quality attributes, like color, firmness, weight loss, total titratable acidity, total soluble solids, and total soluble solids/total titratable acidity ratio, confirmed the effectiveness of activated carbon and activated carbon impregnated with copper oxide in delaying the ripening and senescence process compared to bananas in the control group. The results of this study contribute to the development of ethylene adsorbent materials that combine sustainability and efficiency, with promising applications in the food industry to reduce postharvest losses.

Downloads

Download data is not yet available.

Author Biographies

Ana Carolina de Jesus Oliveira, Universidade Federal de Goiás, School of Agronomy, Goiânia, Goiás, Brazil.

     

Héctor Valdés , Universidad Católica de la Santísima Concepción, Clean Technologies Laboratory, Engineering Faculty, Concepción, Región del Bio Bio, Chile.

Héctor Valdés is a full professor at Universidad Católica de la Santísima Concepción. He is currently the Director of the Industrial Engineering Department and Director of the Clean Technologies Laboratory. He received his PhD in Chemical Engineering at the Universidad de Concepción, Chile in 2003. His main research areas are related to the development of new technologies for the control of air pollution, unconventional technologies for wastewater treatment and postharvest technologies for ethylene control during transportation and storage of fruit and vegetables. Prof. Valdés is the author of 107 Scopus articles, with 2.761 citations and H-index 27. He has 2 invention patents. He has been awarded with 18 FONDECYT project grants, 1 FONDEF project grant, an ECOS-CONICYT project. He is a permanent reviewer of 15 WoS journals. He is a member of the Evaluation Group (Engineering 3), in charge of evaluating the research proposals submitted to the Research Projects Subdirectorate (SPI-FONDECYT) of the Chilean National Agency for Research and Development (ANID). Currently, he is Editor of the journal Ozone: Science & Engineering.

References

Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H., & Al-Attabi, Z. (2023). Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends in Food Science & Technology, 134, 177–191. https://doi.org/10.1016/j.tifs.2023.03.003

Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055. https://doi.org/10.1093/jxb/erf072

Alonso-Salinas, R., López-Miranda, S., Pérez-López, A. J., & Acosta-Motos, J. R. (2024). Strategies to Delay Ethylene-Mediated Ripening in Climacteric Fruits: Implications for Shelf Life Extension and Postharvest Quality. Horticulturae, 10(8), Article 840. https://doi.org/10.3390/horticulturae10080840

Barros, H. E. A., Natarelli, C. V. L., Santos, I. A., Soares, L. S., Pereira, E. P., Oliveira, J. P. L., Machado, G. G. L., Carvalho, E. E. N., Oliveira, J. E., Franco, M., & Vilas Boas, E. V. B. (2024). A new nano-sachet manufactured by solution blow spinning to retard ripening of bananas using biodegradable nanostructured polymeric mats emitting 1-methylcyclopropene. Postharvest Biology and Technology, 214, Article 112993. https://doi.org/10.1016/j.postharvbio.2024.112993

Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and Fruit Ripening. Journal of Plant Growth Regulation, 26(2), 143–159. https://doi.org/10.1007/s00344-007-9002-y

Borges, C. V., Amorim, E. P., Leonel, M., Gomez, H. A. G., Santos, T. P. R., Ledo, C. A. S., Belin, M. A. F., Almeida, S. L., Minatel, I. O., & Lima, G. P. P. (2019). Post-harvest physicochemical profile and bioactive compounds of 19 bananas and plantains genotypes. Bragantia, 78(2), 284–296. https://doi.org/10.1590/1678-4499.20180252

Bruijn, J., Gómez, A., Loyola, C., Melín, P., Solar, V., Abreu, N., Azzolina-Jury, F., & Valdés, H. (2020). Use of a Copper- and Zinc-Modified Natural Zeolite to Improve Ethylene Removal and Postharvest Quality of Tomato Fruit. Crystals, 10(6), Article 471. https://doi.org/10.3390/cryst10060471

Charoensuk, P., Chaiwong, S., Suwunwong, T., Halley, P. J., & Suwantong, O. (2024). Preparation and utilization of biochar from agricultural wastes as ethylene absorber for ‘Gros Michel’ banana ripening. Industrial Crops and Products, 222(4), Article 119860. https://doi.org/10.1016/j.indcrop.2024.119860

Coltro, L., & Karaski, T. U. (2019). Environmental indicators of banana production in Brazil: Cavendish and Prata varieties. Journal of Cleaner Production, 207, 363–378. https://doi.org/10.1016/j.jclepro.2018.09.258

Dai, J., Xu, Z., Zhang, X., Fang, Z., Zhu, J., Kang, T., Xu, Y., Hu, Y., Cao, L., & Zhao, C. (2025). PpNAP4 and ethylene act in a regulatory loop to modulate peach fruit ripening and softening. International Journal of Biological Macromolecules, 291, Article 138791. https://doi.org/10.1016/j.ijbiomac.2024.138791

Fathizadeh, Z., Aboonajmi, M., & Hassan-Beygi, S. R. (2021). Nondestructive methods for determining the firmness of apple fruit flesh. Information Processing in Agriculture, 8(4), 515–527. https://doi.org/10.1016/j.inpa.2020.12.002

Fonseca, J. M., Pabón, N. Y. L., Nandi, L. G., Valencia, G. A., Moreira, R. F. P. M., & Monteiro, A. R. (2021). Gelatin-TiO2-coated expanded polyethylene foam nets as ethylene scavengers for fruit postharvest application. Postharvest Biology and Technology, 180, Article 111602. https://doi.org/10.1016/j.postharvbio.2021.111602

Gierson, D., & Kader, A. A. (1986). Fruit ripening and quality. In J. G. Atherton & J. Rudich (Orgs.), The Tomato Crop: A scientific basis for improvement (1st ed., pp. 241–280). Springer. https://doi.org/10.1007/978-94-009-3137-4_6

González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82(1), 1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

Gupta, S. A., Vishesh, Y., Sarvshrestha, N., Bhardwaj, A. S., Kumar, P. A., Topare, N. S., Raut-Jadhav, S., Bokil, S. A., & Khan, A. (2022). Adsorption isotherm studies of Methylene blue using activated carbon of waste fruit peel as an adsorbent. Materials Today: Proceedings, 57(4), 1500–1508. https://doi.org/10.1016/j.matpr.2021.12.044

Hu, W., Yang, H., Tie, W., Yan, Y., Ding, Z., Liu, Y., Wu, C., Wang, J., Reiter, R. J., Tan, D.-X., Shi, H., Xu, B., & Jin, Z. (2017). Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality. Journal of Agricultural and Food Chemistry, 65(46), 9987–9994. https://doi.org/10.1021/acs.jafc.7b03354

Kamdee, C., Ketsa, S., & van Doorn, W. G. (2009). Effect of heat treatment on ripening and early peel spotting in cv. Sucrier banana. Postharvest Biology and Technology, 52(3), 288–293. https://doi.org/10.1016/j.postharvbio.2008.12.003

Ma, W., Zhang, Y., Chen, L., Xie, X., Yuan, S., Qiu, Z., Zhu, G., & Guo, J. (2024). A novel ZnO-TiO2-Bi2WO6/Carboxymethyl chitosan composite with high antimicrobial activity and visible-light catalytic degradation of ethylene towards banana preservation in hot and humid environments. International Journal of Biological Macromolecules, 281(4), Article 136559. https://doi.org/10.1016/j.ijbiomac.2024.136559

Marsh, H., & Rodríguez-Reinoso, F. (2006). CHAPTER 4 - Characterization of Activated Carbon. In H. Marsh & F. Rodríguez-Reinoso (Eds.), Activated Carbon (pp. 143–242). Elsevier. https://doi.org/10.1016/B978-008044463-5/50018-2

Motta, G. E., Angonese, M., Valencia, G. A., & Ferreira, S. R. S. (2022). Beyond the peel: Biorefinery approach of other banana residues as a springboard to achieve the United Nations’ sustainable development goals. Sustainable Chemistry and Pharmacy, 30, Article 100893. https://doi.org/10.1016/j.scp.2022.100893

Mowlah, G., Takano, K., Kamoi, I., & Obara, T. (1983). Browning Phenomenon by Banana Polyphenoloxidases. Nippon Shokuhin Kogyo Gakkaishi, 30(4), 245–251. https://doi.org/10.3136/nskkk1962.30.245

Murmu, S. B., & Mishra, H. N. (2018). Post-harvest shelf-life of banana and guava: Mechanisms of common degradation problems and emerging counteracting strategies. Innovative Food Science & Emerging Technologies, 49, 20–30. https://doi.org/10.1016/j.ifset.2018.07.011

Nooun, P., Chueangchayaphan, N., Ummarat, N., & Chueangchayaphan, W. (2023). Fabrication and properties of natural rubber/rice starch/activated carbon biocomposite-based packing foam sheets and their application to shelf life extension of ‘Hom Thong’ banana. Industrial Crops and Products, 195, Article 116409. https://doi.org/10.1016/j.indcrop.2023.116409

Oliveira, A. C. J., Rodrigues, C. A. P., Almeida, M. C., Mársico, E. T., Scalize, P. S., Oliveira, T. F., Solar, V. A., & Valdés, H. (2024). Ethylene Elimination Using Activated Carbons Obtained from Baru (Dipteryx alata vog.) Waste and Impregnated with Copper Oxide. Molecules, 29(12), Article 2717. https://doi.org/10.3390/molecules29122717

Osorio, S., & Fernie, A. R. (2013). Biochemistry of Fruit Ripening. In G. B. Seymour, M. Poole, J. J. Giovannoni, & G. A. Tucker (Eds.), The Molecular Biology and Biochemistry of Fruit Ripening (pp. 1–19). John Wiley & Sons. https://doi.org/10.1002/9781118593714.ch1

Patil, H., Naik, R., & Paramasivam, S. K. (2024). Utilization of banana crop ligno-cellulosic waste for sustainable development of biomaterials and nanocomposites. International Journal of Biological Macromolecules, 282(3), Article 137065. https://doi.org/10.1016/j.ijbiomac.2024.137065

Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit Ripening Phenomena–An Overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841

Queiroz, C., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361–375. https://doi.org/10.1080/87559120802089332

Ringer, T., Damerow, L., & Blanke, M. M. (2018). Non-invasive determination of surface features of banana during ripening. Journal of Food Science and Technology, 55(10), 4197–4203. https://doi.org/10.1007/s13197-018-3352-2

Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292. https://doi.org/10.1016/S0925-5214(98)00091-X

Shenoy, S., Pathak, N., Molins, A., Toncheva, A., Schouw, T., Hemberg, A., Laoutid, F., & Mahajan, P. V. (2022). Impact of relative humidity on ethylene removal kinetics of different scavenging materials for fresh produce industry. Postharvest Biology and Technology, 188, Article 111881. https://doi.org/10.1016/j.postharvbio.2022.111881

Shinga, M. H., Kaseke, T., Pfukwa, T. M., & Fawole, O. A. (2025). Optimization of glycerol and cellulose nanofiber concentrations in Opuntia ficus-indica mucilage films functionalized with pomegranate peel extract for postharvest preservation of banana. Food Packaging and Shelf Life, 47, Article 101428. https://doi.org/10.1016/j.fpsl.2024.101428

Singh, S. K., & Dhepe, P. L. (2016). Isolation of lignin by organosolv process from different varieties of rice husk: Understanding their physical and chemical properties. Bioresource Technology, 221, 310–317. https://doi.org/10.1016/j.biortech.2016.09.042

Tepamatr, P. (2023). Efficacy of a palladium-modified activated carbon in improving ethylene removal to delay the ripening of Gros Michel banana. Journal of Agriculture and Food Research, 12, Article 100561. https://doi.org/10.1016/j.jafr.2023.100561

Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14. https://doi.org/10.1016/j.postharvbio.2007.09.004

Tucker, G., Yin, X., Zhang, A., Wang, M., Zhu, Q., Liu, X., Xie, X., Chen, K., & Grierson, D. (2017). Ethylene† and fruit softening. Food Quality and Safety, 1(4), 253–267. https://doi.org/10.1093/fqsafe/fyx024

Wang, H., Zhou, X., Hu, W., Hu, X., Murtaza, A., Wang, L., Xu, X., & Pan, S. (2024). Mechanism of the Abnormal Softening of Banana Pulp Induced by High Temperature and High Humidity During Postharvest Storage. Food and Bioprocess Technology, 17(11), 3577–3587. https://doi.org/10.1007/s11947-024-03335-x

Wang, S.-H., Hwang, Y.-K., Choi, S. W., Yuan, X., Lee, K. B., & Chang, F.-C. (2020). Developing self-activated lignosulfonate-based porous carbon material for ethylene adsorption. Journal of the Taiwan Institute of Chemical Engineers, 115, 315–320. https://doi.org/10.1016/j.jtice.2020.10.017

Wang, T., Song, Y., Lai, L., Fang, D., Li, W., Cao, F., & Su, E. (2024). Sustaining freshness: Critical review of physiological and biochemical transformations and storage techniques in postharvest bananas. Food Packaging and Shelf Life, 46, Article 101386. https://doi.org/10.1016/j.fpsl.2024.101386

Wei, H., Li, L., Zhang, T., Seidi, F., & Xiao, H. (2023). Platinum-loaded dendritic mesoporous silica as novel ethylene scavenger to extend shelf life of banana (Musa nana). Food Chemistry, 424, Article 136415. https://doi.org/10.1016/j.foodchem.2023.136415

Xiao, F., Xiao, Y., Ji, W., Li, L., Zhang, Y., Chen, M., & Wang, H. (2024). Photocatalytic chitosan-based bactericidal films incorporated with WO3/AgBr/Ag and activated carbon for ethylene removal and application to banana preservation. Carbohydrate Polymers, 328, Article 121681. https://doi.org/10.1016/j.carbpol.2023.121681

Xie, J., Wang, R., Li, Y., Ni, Z., Situ, W., Ye, S., & Song, X. (2022). A novel Ag2O-TiO2-Bi2WO6/polyvinyl alcohol composite film with ethylene photocatalytic degradation performance towards banana preservation. Food Chemistry, 375, Article 131708. https://doi.org/10.1016/j.foodchem.2021.131708

Yun, Z., Li, T., Gao, H., Zhu, H., Gupta, V. K., Jiang, Y., & Duan, X. (2019). Integrated Transcriptomic, Proteomic, and Metabolomics Analysis Reveals Peel Ripening of Harvested Banana under Natural Condition. Biomolecules, 9(5), Article 167. https://doi.org/10.3390/biom9050167

Zhang, S., Chen, Q., Hao, M., Zhang, Y., Ren, X., Cao, F., Zhang, L., Sun, Q., & Wennersten, R. (2023). Effect of functional groups on VOCs adsorption by activated carbon: DFT study. Surface Science, 736, Article 122352. https://doi.org/10.1016/j.susc.2023.122352

Zhang, X., Gao, B., Creamer, A. E., Cao, C., & Li, Y. (2017). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013

Zhu, X., Luo, J., Li, Q., Li, J., Liu, T., Wang, R., Chen, W., & Li, X. (2018). Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 146, 68–78. https://doi.org/10.1016/j.postharvbio.2018.08.015

Downloads

Published

2025-08-26

How to Cite

Oliveira, A. C. de J., Silva, F. A. da, Oliveira, T. F. de, & Valdés , H. (2025). Activated carbons from Baru (Dipteryx alata Vog.) waste impregnated with copper oxide: application in the postharvest preservation of bananas. Food Science and Technology, 45. https://doi.org/10.5327/fst.507

Issue

Section

Original Articles