Influence of experimental temperatures on drying kinetics of Theobroma speciosum tea flowers

Autores

DOI:

https://doi.org/10.5327/fst.492

Palavras-chave:

T. speciosum, drying, antioxidants, Midilli mathematical model

Resumo

Drying is a crucial step in ensuring the quality of teas, as it can alter their chemical composition and organoleptic characteristics. In the present study, we examined the effects of different drying temperatures (ranging from 60 to 90°C) using hot air drying (HAD) on Theobroma speciosum flowers concerning drying kinetics, color, digestibility, and antioxidant capacity. From the obtained curves, we analyzed the physical aspects of T. speciosum, along with the moisture loss throughout the process, and the impact of different temperatures. This revealed that the Midilli mathematical model was the most suitable, where a set of equations was used to predict the analysis method’s behavior. The results demonstrated that drying at 60°C was more effective in terms of drying rates, diffusivity, and bioactive compound content, making it a promising option for the pre-treatment of T. speciosum flower tea.

Downloads

Não há dados estatísticos.

Referências

de Souza Carvalho, L. M., Lemos, M. C. M., Sanches, E. A., da Silva, L. S., de Araújo Bezerra, J., Aguiar, J. P. L., das Chagas do Amaral Souza, F., Alves Filho, E. G., & Campelo, P. H. (2020). Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrasonics Sonochemistry, 67(4), Article 105148. https://doi.org/10.1016/j.ultsonch.2020.105148

Guiné, R. P. F., Fontes, L., & Lima, M. J. R. (2019). Drying kinetics and mass transfer properties in the drying of thistle flower. Brazilian Journal of Food Technology, 22(1), Article e2019051. https://doi.org/10.1590/1981-6723.05119

José Jara-Palacios, M., Gonçalves, S., Hernanz, D., Heredia, F. J., & Romano, A. (2018). Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Research International, 109(4), 433–439. https://doi.org/10.1016/j.foodres.2018.04.060

Kowalska, J., Marzec, A., Domian, E., Galus, S., Ciurzyńska, A., Brzezińska, R., & Kowalska, H. (2021). Influence of tea brewing parameters on the antioxidant potential of infusions and extracts depending on the degree of processing of the leaves of Camellia sinensis. Molecules, 26(16), Article 4773. https://doi.org/10.3390/molecules26164773

Liu, X. Q., Deng, Y. X., Dai, Z., Hu, T., Cai, W. W., Liu, H. F., Li, H., Zhu, W. L., Li, B. Y., Wang, Q., & Zhang, S. J. (2020). Sodium tanshinone IIA sulfonate protects against Aβ1–42-induced cellular toxicity by modulating Aβ-degrading enzymes in HT22 cells. International Journal of Biological Macromolecules, 151(1), 47–55. https://doi.org/10.1016/j.ijbiomac.2020.02.040

Liu, Y., Luo, L., Liao, C., Chen, L., Wang, J., & Zeng, L. (2018). Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology. Food Chemistry, 269(2), 24–34. https://doi.org/10.1016/j.foodchem.2018.06.130

Mar, J. M., da Fonseca Júnior, E. Q., Corrêa, R. F., Campelo, P. H., Sanches, E. A., & Bezerra, J. de A. (2024). Theobroma spp.: A review of it’s chemical and innovation potential for the food industry. Food Chemistry Advances, 4, Article 100683. https://doi.org/10.1016/j.focha.2024.100683

Mar, J. M., Silva, L. S., Rabello, M. da S., Biondo, M. M., Kinupp, V. F., Campelo, P. H., Bruginski, E., Campos, F. R., Bezerra, J. de A., & Sanches, E. A. (2021). Development of alginate/inulin carrier systems containing non-conventional Amazonian berry extracts. Food Research International, 139(10), Article 109838. https://doi.org/10.1016/j.foodres.2020.109838

Mar, J. M., Silva, L. S., Rabelo, S., Muniz, M. P., Nunomura, S. M., Correa, R. F., Ferreira, V., Campelo, P. H., Bezerra, J. D. A., & Sanches, E. A. (2020). Encapsulation of Amazonian blueberry juices: Evaluation of bioactive compounds and stability. LWT - Food Science and Technology, 124(2), Article 109152. https://doi.org/10.1016/j.lwt.2020.109152

Marcel, A., Hubert, M., Bienvenu, M. J., & Pascal, O. (2016). Physico-chemical characteristics and biochemical potential of Moringa oleifera Lam. (Moringaceae). Der Pharmacia Lettre, 8(18), 43–47. Retrieved from https://africaresearchconnects.com/pt-pt/papel/66097ffd912dd4b33d7b89ff157f2e6bbbd61cd0249a8cb059bd74acf8c139be/

Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513. https://doi.org/10.1081/DRT-120005864

Moreira Mar, J., da Silva, L. S., Moreira, W. P., Biondo, M. M., Pontes, F. L. D., Campos, F. R., Kinupp, V. F., Campelo, P. H., Sanches, E. A., & Bezerra, J. A. (2021). Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chemistry, 356(1), Article 129723. https://doi.org/10.1016/j.foodchem.2021.129723

Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501–508. https://doi.org/10.1111/j.1365-2672.1996.tb03539.x

Safdar, N., Sarfaraz, A., Kazmi, Z., & Yasmin, A. (2016). Ten different brewing methods of green tea: comparative antioxidant study. Journal of Applied Biology & Biotechnology, 4(3), 33–40. https://dx.doi.org/10.7324/JABB.2016.40306

Selvakumar, P. (2023). Drying diverse temperatures alters the physico ‑ chemical and phytochemical properties of moringa flowers. Journal of Preventive, Diagnostic and Treatment Strategies in Medicine, 2(1), 60–66. https://doi.org/10.4103/jpdtsm.jpdtsm_77_22

Shi, L., Gu, Y., Wu, D., Wu, X., Grierson, D., Tu, Y., & Wu, Y. (2019). Hot air drying of tea flowers: effect of experimental temperatures on drying kinetics, bioactive compounds and quality attributes. International Journal of Food Science and Technology, 54(2), 526–535. https://doi.org/10.1111/ijfs.13967

Silva, L. A., Fischer, S. Z., & Zambiazi, R. C. (2020). Proximal composition, bioactive compounds content and color preference of Viola x Wittrockiana flowers. International Journal of Gastronomy and Food Science, 22, Article 100236. https://doi.org/10.1016/j.ijgfs.2020.100236

Takahashi, J. A., Rezende, F. A. G. G., Moura, M. A. F., Dominguete, L. C. B., & Sande, D. (2020). Edible flowers: Bioactive profile and its potential to be used in food development. Food Research International, 129(10), Article 108868. https://doi.org/10.1016/j.foodres.2019.108868

Uribe, E., Lemus-Mondaca, R., Vega-Gálvez, A., Zamorano, M., Quispe-Fuentes, I., Pasten, A., & Di Scala, K. (2014). Influence of process temperature on drying kinetics, physicochemical properties and antioxidant capacity of the olive-waste cake. Food Chemistry, 147, 170–176. https://doi.org/10.1016/j.foodchem.2013.09.121

Vashisth, T., Singh, R. K., & Pegg, R. B. (2011). Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. Lwt, 44(7), 1649–1657. https://doi.org/10.1016/j.lwt.2011.02.011

Zawiślak, A., Francik, R., Francik, S., & Knapczyk, A. (2022). Impact of drying conditions on antioxidant activity of red clover (Trifolium pratense), sweet violet (Viola odorata) and elderberry flowers (Sambucus nigra). Materials, 15(9), Article 3317. https://doi.org/10.3390/ma15093317

Zhang, S., Yang, Y., Cheng, X., Thangaraj, K., Arkorful, E., Chen, X., & Li, X. (2020). Prediction of suitable brewing cuppages of Dahongpao tea based on chemical composition, liquor colour and sensory quality in different brewing. Scientific Reports, 10(1), Article 945. https://doi.org/10.1038/s41598-020-57623-5

Downloads

Publicado

2025-08-26

Como Citar

Mar, J. M., Carolino, A. de S., Correa, R. F., Kinupp, V. F., Sanches, E. A., Campelo, P. H., & Bezerra, J. de A. (2025). Influence of experimental temperatures on drying kinetics of Theobroma speciosum tea flowers. Food Science and Technology, 45. https://doi.org/10.5327/fst.492

Edição

Seção

Artigos Originais