Prevalence of Multidrug-resistant Escherichia coli in the Swine Production Chain: Implications for Food Safety in Brazilian Slaughterhouses
DOI:
https://doi.org/10.5327/fst.477Palavras-chave:
antimicrobial resistance, blaCTX-M, carcasses, ESBL, pig, public healthResumo
Multidrug resistance is a significant threat to global public health. This study aimed to detect and characterize antimicrobial-resistant microorganisms in swine feces and carcasses obtained from slaughterhouses. A total of 214 samples were collected, comprising 111 swine feces and 103 from carcasses, across two different slaughterhouses. Polymerase chain reaction was used to detect antimicrobial resistance genes, identifying 22 resistant isolates that were subsequently confirmed to be Escherichia coli. Pulsed-field gel electrophoresis was performed on these 22 isolates to investigate their genetic similarity. The Kirby–Bauer disk diffusion method characterized phenotypic resistance to different antimicrobials. The blaCTX-M-1 gene was detected in all 22 E. coli isolates. Additionally, 90.9% of the strains were considered multidrug-resistant, exhibiting resistance to at least three different antimicrobial classes. The isolates exhibited high genetic diversity. The presence of these multidrug-resistant bacteria in swine and animal-derived foods emphasizes the importance of sanitation measures during production to protect public health.
Downloads
Referências
Aasmäe, B., Häkkinen, L., Kaart, T., & Kalmus, P. (2019). Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from Estonian cattle and swine from 2010 to 2015. Acta Veterinaria Scandinavica, 61(1), Article 5. https://doi.org/10.1186/s13028-019-0441-9
Albernaz-Gonçalves, R., Olmos, G., & Hötzel, M. J. (2021). Exploring farmers’ reasons for antibiotic use and misuse in pig farms in Brazil. Antibiotics, 10(3), Article 331. https://doi.org/10.3390/antibiotics10030331
Benavides, J. A., Salgado-Caxito, M., Opazo-Capurro, A., Muñoz, P. G., Piñeiro, A., Medina, M. O., Rivas, L., Munita, J., & Millán, J. (2021). ESBL-producing Escherichia coli carrying CTX-M genes circulating among livestock, dogs, and wild mammals in small-scale farms of central Chile. Antibiotics, 10(5), Article 510. https://doi.org/10.3390/antibiotics10050510
Borges, C. A., Beraldo, L. G., Maluta, R. P., Cardozo, M. V., Guth, B. E. C., Rigobelo, E. C., & Ávila, F. A. (2012). Shiga toxigenic and atypical enteropathogenic Escherichia coli in the feces and carcasses of slaughtered pigs. Foodborne Pathogens and Disease, 9(12), 1119–1125. https://doi.org/10.1089/fpd.2012.1206
Cantón, R., González-Alba, J. M., & Galán, J. C. (2012). CTX-M enzymes: Origin and diffusion. Frontiers in Microbiology, 3, Article 110. https://doi.org/10.3389/fmicb.2012.00110
Cheng, G., Ning, J., Ahmed, S., Huang, J., Ullah, R., An, B., Hao, H., Dai, M., Huang, L., Wang, X., & Yuan, Z. (2019). Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrobial Resistance and Infection Control, 8(1), Article 158. https://doi.org/10.1186/s13756-019-0623-2
Clinical and Laboratory Standards Institute. (2024a). CLSI VET01S: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals (7th ed.). CLSI.
Clinical and Laboratory Standards Institute. (2024b). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals (34th ed.). CLSI.
Conedera, G., Mattiazzi, E., Russo, F., Chiesa, E., Scorzato, I., Grandesso, S., Bessegato, A., Fioravanti, A., & Caprioli, A. (2007). A family outbreak of Escherichia coli O157 haemorrhagic colitis caused by pork meat salami. Epidemiology and Infection, 135(2), 311–314. https://doi.org/10.1017/S0950268806006807
Cormier, A., Zhang, P. L. C., Chalmers, G., Weese, J. S., Deckert, A., Mulvey, M., McAllister, T., & Boerlin, P. (2019). Diversity of CTX-M-positive Escherichia coli recovered from animals in Canada. Veterinary Microbiology, 231, 71–75. https://doi.org/10.1016/j.vetmic.2019.02.031
Crits-Christoph, A., Hallowell, H. A., Koutouvalis, K., & Suez, J. (2022). Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes, 14(1), Article 2055944 . https://doi.org/10.1080/19490976.2022.2055944
Dewulf, J., Joosten, P., Chantziaras, I., Bernaerdt, E., Vanderhaeghen, W., Postma, M., & Maes, D. (2022). Antibiotic Use in European Pig Production: Less Is More. Antibiotics, 11(11), Article 1493. https://doi.org/10.3390/antibiotics11111493
Egbule, O. S., Iweriebor, B. C., & Odum, E. I. (2021). Beta-lactamase-producing Escherichia coli isolates recovered from pig handlers in retail shops and abattoirs in selected localities in Southern Nigeria: Implications for public health. Antibiotics, 10(1), Article 9. https://doi.org/10.3390/antibiotics10010009
Ewers, C., Janßen, T., Kießling, S., Philipp, H.-C., & Wieler, L. H. (2004). Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Veterinary Microbiology, 104(1–2), 91–101. https://doi.org/10.1016/j.vetmic.2004.09.008
Faccone, D., Moredo, F. A., Giacoboni, G. I., Albornoz, E., Alarcón, L., Nievas, V. F., & Corso, A. (2019). Multidrug-resistant Escherichia coli harbouring mcr-1 and blaCTX-M genes isolated from swine in Argentina. Journal of Global Antimicrobial Resistance, 18, 160–162. https://doi.org/10.1016/j.jgar.2019.03.011
Geser, N., Stephan, R., Kuhnert, P., Zbinden, R., Kaeppeli, U., Cernela, N., & Haechler, H. (2011). Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. Journal of Food Protection, 74(3), 446–449. https://doi.org/10.4315/0362-028X.JFP-10-372
Gundran, R. S., Cardenio, P. A., Villanueva, M. A., Sison, F. B., Benigno, C. C., Kreausukon, K., Pichpol, D., & Punyapornwithaya, V. (2019). Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Veterinary Research, 15(1), Article 227. https://doi.org/10.1186/s12917-019-1975-9
Guragain, M., Schmidt, J. W., Bagi, L. K., Paoli, G. C., Kalchayanand, N., & Bosilevac, J. M. (2024). Antibiotic Resistance and Disinfectant Resistance Among Escherichia coli Isolated During Red Meat Production. Journal of Food Protection, 87(6), Article 100288. https://doi.org/10.1016/j.jfp.2024.100288
Guyomard-Rabenirina, S., Reynaud, Y., Pot, M., Albina, E., Couvin, D., Ducat, C., Gruel, G., Ferdinand, S., Legreneur, P., Le Hello, S., Malpote, E., Sadikalay, S., Talarmin, A., & Breurec, S. (2020). Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single blaCTX–M–1/IncI1/ST3 Plasmid Among Humans and Wild Animals. Frontiers in Microbiology, 11, Article 1524. https://doi.org/10.3389/fmicb.2020.01524
Hamel, M., Rolain, J.-M., & Baron, S. A. (2021). The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms, 9(2), Article 442. https://doi.org/10.3390/microorganisms9020442
Headd, B., & Bradford, S. A. (2020). The Conjugation Window in an Escherichia coli K-12 Strain with an IncFII Plasmid. Applied and Environmental Microbiology, 86(17), Article e00948-20. https://doi.org/10.1128/AEM.00948-20
Hesp, A., ter Braak, C., van der Goot, J., Veldman, K., van Schaik, G., & Mevius, D. (2021). Antimicrobial resistance clusters in commensal Escherichia coli from livestock. Zoonoses and Public Health, 68(3), 194–202. https://doi.org/10.1111/zph.12805
Hirsch, A. C., Philipp, H., & Kleemann, R. (2003). Investigation on the efficacy of meloxicam in sows with mastitis–metritis–agalactia syndrome. Journal of Veterinary Pharmacology and Therapeutics, 26(5), 355–360. https://doi.org/10.1046/j.1365-2885.2003.00524.x
Holman, D. B., & Chénier, M. R. (2015). Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian Journal of Microbiology, 61(11), 785–798. https://doi.org/10.1139/cjm-2015-0239
Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0
Hussein, N. H., AL-Kadmy, I. M. S., Taha, B. M., & Hussein, J. D. (2021). Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Molecular Biology Reports, 48(3), 2897–2907. https://doi.org/10.1007/s11033-021-06307-y
Kieffer, N., Nordmann, P., Moreno, A. M., Moreno, L. Z., Chaby, R., Breton, A., Tissières, P., & Poirel, L. (2018). Genetic and Functional Characterization of an MCR-3-Like Enzyme-Producing Escherichia coli Isolate Recovered from Swine in Brazil. Antimicrobial Agents and Chemotherapy, 62(7), Article e00278-18. https://doi.org/10.1128/AAC.00278-18
Kimera, Z. I., Mgaya, F. X., Misinzo, G., Mshana, S. E., Moremi, N., & Matee, M. I. N. (2021). Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam, Tanzania. Antibiotics, 10(4), Article 406. https://doi.org/10.3390/antibiotics10040406
Larbi, R. O., Ofori, L. A., Sylverken, A. A., Ayim-Akonor, M., & Obiri-Danso, K. (2021). Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana. International Journal of Microbiology, 2021, Article 5158185. https://doi.org/10.1155/2021/5158185
Lima, L. M., Silva, B. N. M., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry, 208, Article 112829. https://doi.org/10.1016/j.ejmech.2020.112829
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2011). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Mitsuwan, W., Intongead, S., Saengsawang, P., Romyasamit, C., Narinthorn, R., Nissapatorn, V., Pereira, M. L., Paul, A. K., Wongtawan, T., & Boripun, R. (2023). Occurrence of multidrug resistance associated with extended-spectrum β‑lactamase and the biofilm forming ability of Escherichia coli in environmental swine husbandry. Comparative Immunology, Microbiology and Infectious Diseases, 103, Article 102093. https://doi.org/10.1016/j.cimid.2023.102093
Nakano, A., Nakano, R., Nishisouzu, R., Suzuki, Y., Horiuchi, S., Kikuchi-Ueda, T., Ubagai, T., Ono, Y., & Yano, H. (2021). Prevalence and Relatedness of mcr-1-Mediated Colistin-Resistant Escherichia coli Isolated From Livestock and Farmers in Japan. Frontiers in Microbiology, 12, Article 664931. https://doi.org/10.3389/fmicb.2021.664931
Oliveira, B. C., Santa Rosa, I. C. A., Dutra, M. C., Ferreira, F. N. A., Moreno, A. M., Moreno, L. Z., Silva, J. M. G., Garcia, S. K., & Fontes, D. O. (2024). Antimicrobial Use in Pig Farms in the Midwestern Region of Minas Gerais, Brazil. Antibiotics, 13(5), Article 403. https://doi.org/10.3390/antibiotics13050403
Oliveira, R. P., Silva, J. S., Silva, G. C., Rosa, J. N., Bazzolli, D. M. S., & Mantovani, H. C. (2024). Prevalence and characteristics of ESBL-producing Escherichia coli in clinically healthy pigs: implications for antibiotic resistance spread in livestock. Journal of Applied Microbiology, 135(4), Article lxae058. https://doi.org/10.1093/jambio/lxae058
Rabello, R. F., Bonelli, R. R., Penna, B. A., Albuquerque, J. P., Souza, R. M., & Cerqueira, A. M. F. (2020). Antimicrobial resistance in farm animals in Brazil: An update overview. Animals, 10(4), Article 552. https://doi.org/10.3390/ani10040552
Randall, L. P., Lemma, F., Rogers, J. P., Cheney, T. E. A., Powell, L. F., & Teale, C. J. (2014). Prevalence of extended-spectrum-β-lactamase-producing Escherichia coli from pigs at slaughter in the UK in 2013. Journal of Antimicrobial Chemotherapy, 69(11), 2947–2950. https://doi.org/10.1093/jac/dku258
Ribot, E. M., Fair, M. A., Gautom, R., Cameron, D. N., Hunter, S. B., Swaminathan, B., & Barrett, T. J. (2006). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathogens and Disease, 3(1), 59–67. https://doi.org/10.1089/fpd.2006.3.59
Santos, R. L., Davanzo, E. F. A., Palma, J. M., Castro, V. H. L., Costa, H. M. B., Dallago, B. S. L., Perecmanis, S., & Santana, Â. P. (2022). Molecular characterization and biofilm-formation analysis of Listeria monocytogenes, Salmonella spp., and Escherichia coli isolated from Brazilian swine slaughterhouses. PLoS ONE, 17(9), Article e0274636. https://doi.org/10.1371/journal.pone.0274636
Shafiq, M., Bilal, H., Permana, B., Xu, D., Cai, G., Li, X., Zeng, M., Yuan, Y., Jiao, X., & Yao, F. (2023). Characterization of antibiotic resistance genes and mobile elements in extended-spectrum β-lactamase-producing Escherichia coli strains isolated from hospitalized patients in Guangdong, China. Journal of Applied Microbiology, 134(7), Article lxad125. https://doi.org/10.1093/jambio/lxad125
Sodagari, H. R., & Varga, C. (2023). Evaluating Antimicrobial Resistance Trends in Commensal Escherichia coli Isolated from Cecal Samples of Swine at Slaughter in the United States, 2013–2019. Microorganisms, 11(4), Article 1033. https://doi.org/10.3390/microorganisms11041033
Spindola, M. G., Cunha, M. P. V., Moreno, L. Z., Amigo, C. R., Silva, A. P. S., Parra, B. M., Poor, A. P., Oliveira, C. H., Perez, B. P., Knobl, T., & Moreno, A. M. (2018). Genetic diversity, virulence genotype and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from sows. Veterinary Quarterly, 38(1), 79–87. https://doi.org/10.1080/01652176.2018.1519321
Tran, T. H. T., Everaert, N., & Bindelle, J. (2018). Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. Journal of Animal Physiology and Animal Nutrition, 102(1), 17–32. https://doi.org/10.1111/jpn.12666
Tseng, C.-H., Liu, C.-W., & Liu, P.-Y. (2023). Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Antibiotics, 12(4), Article 661. https://doi.org/10.3390/antibiotics12040661
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459), Article eaaw1944. https://doi.org/10.1126/science.aaw1944
Viana, C., Grossi, J. L., Sereno, M. J., Yamatogi, R. S., Bersot, L. S., Call, D. R., & Nero, L. A. (2020). Phenotypic and genotypic characterization of non-typhoidal Salmonella isolated from a Brazilian pork production chain. Food Research International, 137, Article 109406. https://doi.org/10.1016/j.foodres.2020.109406
Wang, X., Wang, Y., Zhou, Y., Li, J., Yin, W., Wang, S., Zhang, S., Shen, J., Shen, Z., & Wang, Y. (2018). Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerging Microbes and Infections, 7(1), 1–9. https://doi.org/10.1038/s41426-018-0124-z
Yamanaka, T., Funakoshi, H., Kinoshita, K., Iwashita, C., & Horikoshi, Y. (2020). CTX-M group gene distribution of extended spectrum beta-lactamase-producing Enterobacteriaceae at a Japanese Children’s hospital. Journal of Infection and Chemotherapy, 26(9), 1005–1007. https://doi.org/10.1016/j.jiac.2020.05.017
Yang, H., Wei, S.-H., Hobman, J. L., & Dodd, C. E. R. (2020). Antibiotic and metal resistance in Escherichia coli isolated from pig slaughterhouses in the United Kingdom. Antibiotics, 9(11), Article 746. https://doi.org/10.3390/antibiotics9110746
Yu, K., Huang, Z., Xiao, Y., Gao, H., Bai, X., & Wang, D. (2024). Global spread characteristics of CTX-M-type extended-spectrum β-lactamases: A genomic epidemiology analysis. Drug Resistance Updates, 73, Article 101036. https://doi.org/10.1016/j.drup.2023.101036
Zelendova, M., Dolejska, M., Masarikova, M., Jamborova, I., Vasek, J., Smola, J., Manga, I., & Cizek, A. (2020). CTX‐M‐producing Escherichia coli in pigs from a Czech farm during production cycle. Letters in Applied Microbiology, 71(4), 369–376. https://doi.org/10.1111/lam.13331
Zhou, W., Lin, R., Zhou, Z., Ma, J., Lin, H., Zheng, X., Wang, J., Wu, J., Dong, Y., Jiang, H., Yang, H., Yang, Z., Tang, B., & Yue, M. (2022). Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Frontiers in Microbiology, 13, Article 1018682. https://doi.org/10.3389/fmicb.2022.1018682