Evaluation of antinutritional factors in the digestibility of proteins from Amaranthus caudatus seeds
DOI:
https://doi.org/10.5327/fst.00467Palavras-chave:
Amaranthus caudatus, seeds, in vitro digestibility, lectins, protease inhibitor, 2S albuminResumo
With population growth, the need for natural products with a good nutritional balance increases. Digestibility is an important factor that defines the nutritional diet and the quality of proteins. This work aims to evaluate the protein digestibility of Amaranth (Amaranthus caudatus) seeds. Amaranthus seed extracts showed inhibitory activity and hemagglutinating activity. In the simulating gastric fluid condition, hydrolysis products were detected, a 70 kDa band, which does not appear in the control. After the heating treatment, pepsin easily digested the 29 kDa lectin bands and a gradual digestion of the 12 and less than 10 kDa bands, probably the protease inhibitors. In the simulating intestinal fluid evaluation, without heating, the bands of 29, 12, and less than 10 kDa showed resistance to digestion. After heat treatment, the intensity of the corresponding bands 12 and those less than 10 kDa gradually decreased compared to the band of 29 kDa, which was digested quickly. Amaranthus seeds showed antinutritional factors, inhibitors, and lectins, demonstrating that at appropriate treatment and increased temperature it can improve more the efficient activities of digestive enzymes. Therefore, this work shows the importance of cooking for better protein absorption of Amaranthus seeds, making them a good source of amino acids.
Downloads
Referências
Adamcová, A., Laursen, K. H., Ballin, & N. Z. (2021). Lectin Activity in Commonly Consumed Plant-Based Foods: Calling for Method Harmonization and Risk Assessment. Foods, 10(11), Article 2796. https://doi.org/10.3390/foods10112796
Arcoverde, J. H. V., Carvalho, A. S., Neves, F. P. A., Dionízio, B. P., Pontual, E. V., Paiva, P. M. G., Napoleão, T. H., Correia, M. T. S, Silva, M. V., & Carneiro-da-Cunha, M. G. (2014). Screening of Caatinga plants as sources of lectins and trypsin inhibitors. Natural Product Research, 28(16), 1297–1301. https://doi.org/10.1080/14786419.2014.900497
Ashaolu, T. J., Greff, B., & Varga, L. (2025). The structure–function relationships and techno-functions of β-conglycinin. Food Chemistry, 462, Article 140950. https://doi.org/10.1016/j.foodchem.2024.140950
Bailey, H. M., Fanelli, N. S., & Stein, H. H. (2023). Effect of heat treatment on protein quality of rapeseed protein isolate compared with non-heated rapeseed isolate, soy and whey protein isolates, and rice and pea protein concentrates. Journal of the Science Food Agriculture, 103(14), 7251–7259. https://doi.org/10.1002/jsfa.12809
Bera, I., O'Sullivan, M., Flynn, D. & Shields, D. C. (2023). Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules, 28(7), Article 3204. https://doi.org/10.3390/molecules28073204
Bhat, Z. F., Morton, J. D., Bekhit, A. E.-D. A., Kumar, S., & Bhat, H. F. (2022). Non-thermal processing has an impact on the digestibility of the muscle proteins. Critical Reviews in Food Science and Nutrition, 62(28), 7773–7800. https://doi.org/10.1080/10408398.2021.1918629
Bobrovs, R., Basens, E. E., Drunka, L., Kanepe, I., Matisone, S., Velins, K. K., Andrianov, V., Leitis, G., Zelencova-Gopejenko, D., Rasina, D., Jirgensons, A., & Jaudzems, K. (2022). Exploring Aspartic Protease Inhibitor Binding to Design Selective Antimalarials. Journal of Chemical Information and Modeling, 62(13), 3263–3273. https://doi.org/10.1021/acs.jcim.2c00422
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Bueno-Díaz, C., Biserni, C., Martín-Pedraza, L., Las Heras, M., Blanco, C., Vázquez-Cortés, S., Fernández-Rivas, M., Batanero, E., Cuesta-Herranz, J., & Villalba, M. (2022). Association Between the Seed Storage Proteins 2S Albumin and 11S Globulin and Severe Allergic Reaction After Flaxseed Intake. Journal of Investigational Allergology and Clinical Immunology, 32(5), 375–382. https://doi.org/10.18176/jiaci.0713
Canoy, T. S., Wiedenbein, E. S., Bredie, W. L. P., Meyer, A. S., Wösten, H. A. B., & Nielsen, D. S. (2024). Solid-State Fermented Plant Foods as New Protein Sources. Annual Review of Food Science Technology, 15(1), 189–210. https://doi.org/10.1146/annurev-food-060721-013526
Capraro, J., Benedetti, S., Heinzl, G. C., Scarafoni, A., & Magni, C. (2021). Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. International Journal of Molecular Science, 22(7), Article 3543. https://doi.org/10.3390/ijms22073543
Carrillo, C., Cordoba-Diaz, D., Cordoba-Diaz, M., Girbés, T., & Jiménez, P. (2017). Effects of temperature, pH and sugar binding on the structures of lectins ebulin f and SELfd. Food Chemistry, 220, 324–330. https://doi.org/10.1016/j.foodchem.2016.10.007
Carrillo, J. B., Gomez-Casati, D. F., Busi, M. V., & Martín, M. (2017). Development of fast and simple chromogenic methods for glucan phosphatases in-gel activity assays. Analytical Biochemistry, 517, 36–39. https://doi.org/10.1016/j.ab.2016.11.005
Castro, A. H. F., Tavares, H. S., Pereira, S. R. F., Granjeiro, P. A., Silva, J. A., & Galdino, A. S. (2018). Production and characterization of lectin from Bauhinia holophylla (Fabaceae:Cercideae) calli. Plant cell Tissue and Organ Culture, 134, 423–432. https://doi.org/10.1007/s11240-018-1432-7
Cordeiro, I. H., Lima, N. M., Scherrer, E. C., Carli, G. P., Andrade, T. J. A. S., Castro, S. B. R., Oliveira, M. A. L., Alves, C. C. S., & Carli, A. P. (2024). Protease inhibitors characterisation by SDS-PAGE and MALDI-TOF from Alocasia macrorrhizos and their modulation of macrophage immune-inflammatory properties. Natural Product Research, 38(19), 3454–3459. https://doi.org/10.1080/14786419.2023.2246278
Dang, L., Rougé, P., & Van Damme, E. J. M. (2017). Amaranthin-Like Proteins with Aerolysin Domains in Plants. Frontiers in Plant Science, 8, Article 1368. https://doi.org/10.3389/fpls.2017.01368
Dutta, M., Dineshkumar, R., Nagesh, C. R., Lakshmi, Y. D., Lekhak, B., Bansal, N., Goswami, S., Kumar, R. R., Kundu, A., Mandal, P. K., Arora, B., Raje, R. S., Mandal, S., Yadav, A., Tyagi, A., Ramesh, S. V., Prashat, G. R., & Vinutha., T. (2024). Exploring protein structural adaptations and polyphenol interactions: Influences on digestibility in pigeon pea dal and whole grains under heat and germination conditions. Food Chemistry, 460(Part 1), Article 140561. https://doi.org/10.1016/j.foodchem.2024.140561
Feijoo-Coronel, M. L., Mendes, B., Ramírez, D., Peña-Varas, C., Monteros-Silva, N. Q. E., Proaño-Bolaños, C., Oliveira, L. C., Lívio, D. F., Silva, J. A., Silva, J. M. S. F., Pereira, M. G. A. G., Rodrigues, M. Q. R. B., Teixeira, M. M., Granjeiro, P. A., Patel, K., Vaiyapuri, S., & Almeida, J. R. (2024). Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics, 13(1), Article 78. https://doi.org/10.3390/antibiotics13010078
Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children’s Fund, World Food Programme, & World Health Organization. (2023). The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. FAO. https://doi.org/10.4060/cc3017en
Gueugneau, M. (2023). The value of dietary plant protein in older people. Current Opinion in Clinical Nutrition and Metabolic Care, 26(1), 3–7. https://doi.org/10.1097/mco.0000000000000884
Hasan, I., Rahman, S. N., Islam, M. M., Ghosh, S. K., Mamun, M. R., Uddin, M. B., Shaha, R. K., & Kabir, S. R. (2021). A N-acetyl-D-galactosamine-binding lectin from Amaranthus gangeticus seeds inhibits biofilm formation and Ehrlich ascites carcinoma cell growth in vivo in mice. International Journal of Biological Macromolecules, 181, 928–936. https://doi.org/10.1016/j.ijbiomac.2021.04.052
He, S., Simpson, B. K., Ngadi, M. O., & Ma, Y. (2015). In vitro studies of the digestibility of lectin from black turtle bean (Phaseolus vulgaris). Food Chemistry, 173, 397–404. https://doi.org/10.1016/j.foodchem.2014.10.045
Idries, A. H., Naser, E. H., Dafalla, M. B., Elmubarak, S. A. A., Abdelrahim, Y. E., Abdalrhman, E. A., Alwali, S. M., Ahmed, B. M., Yousef, B. A., Ebrahim, R. M. A., Abdellatif, A. O., Awadallah, A. K. E., Osman, M. E. M., & Konozy, E. H. E. (2024). Biological activity and characterization of leaf and seed lectins from Terminalia brownii: Insights into their analgesic and antiulcer properties. Heliyon, 10(20), Article e39351
Jan, N., Hussain, S. Z., Naseer, B., & Bhat, T. A. (2023). Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chemistry: X, 18, Article 100687. https://doi.org/10.1016/j.fochx.2023.100687
Kårlund, A., Paukkonen, I., Gómez-Gallego, C., & Kolehmainen, M. (2021). Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare, 9(8), Article 1002. https://doi.org/10.3390/healthcare9081002
Katsube-Tanaka, T., & Monshi, F. I. (2022). Characterization of 2S albumin allergenic proteins for anaphylaxis in common buckwheat. Food Chemistry: Molecular Sciences, 5, Article 100127. https://doi.org/10.1016/j.fochms.2022.100127
Kong, X., Li, Y., & Liu, X. (2022). A review of thermosensitive antinutritional factors in plant-based foods. Journal of Food Biochemistry, 46(9), Article e14199. https://doi.org/10.1111/jfbc.14199
Krauchenco, S., Nagem, R. A. P., Silva, J. A., Marangoni, S., & Polikarpov, I. (2004). Three-dimensional structure of an unusual Kunitz (STI) type trypsin inhibitor from Copaifera langsdorffii. Biochimie, 86(3), 167–172. https://doi.org/10.1016/j.biochi.2004.03.004
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
Lang, G.-H., Kagiya, Y., & Kitta, K. (2015). Multiplex comparison of the digestibility of allergenic and non-allergenic proteins in rice grains by in vitro digestion. Food Chemistry, 168, 606–614. https://doi.org/10.1016/j.foodchem.2014.07.089
Lang, Y., Li, B., Gong, E., Shu, C., Si, X., Gao, N., Zhang, W., Cui, H., & Meng, X. (2021). Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chemistry, 334, Article 127526. https://doi.org/10.1016/j.foodchem.2020.127526
Lao, Y., Ye, Q., Wang, Y., Vongsvivut, J., & Selomulya, C. (2023). Quantifying the effects of pre-roasting on structural and functional properties of yellow pea proteins. Food Research International, 172, Article 113180. https://doi.org/10.1016/j.foodres.2023.113180
Lee, S., Jo, K., Jeong, S.-K. C., Jeon, H., Kim, Y.-J., Choi, Y.-S., & Jung, S. (2024). Heat-induced gelation of egg white proteins depending on heating temperature: Insights into protein structure and digestive behaviors in the elderly in vitro digestion model. International Journal of Biological Macromolecules, 262(Part 2), Article 130053. https://doi.org/10.1016/j.ijbiomac.2024.130053
Luz, A. B. S., Medeiros, A. F., Medeiros, G. C. B. S., Piuvezam, G., Passos, T. S., & Morais, A. H. A. (2024). Experimental protocols used to mimic gastrointestinal protein digestion: a systematic review. Nutrients, 16(15), Article 2398. https://doi.org/10.3390/nu16152398
Mangena, P. (2022). Pleiotropic effects of recombinant protease inhibitors in plants. Frontiers in Plant Science, 13, Article 994710. https://doi.org/10.3389/fpls.2022.994710
Naser, E. H., Idries, A. H., Elmubarak, S. A. A., Dafalla, M. B., Abdelrahim, Y. E., Abdalrhman, E. A., Ahmed, B. M., Osman, M. E. M., Awadallah, A. K. E., Ebrahim, R. M. A., Abdellatif, A. O., Saad, H. A., & Konozy, E. H. E. (2024). Isolation, purification, and characterization of lectins from medicinal plant Combretum glutinosum seeds endowed with analgesic and antiulcer properties. Biochimie, 227(Part A), 273–285. https://doi.org/10.1016/j.biochi.2024.08.003
Ohanenye, I. C., Ekezie, F.-G. C., Sarteshnizi, R. A., Boachie, R. T., Emenike, C. U., Sun, X., Nwachukwu, I. D., & Udenigwe, C. C. (2022). Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies. Foods, 11(15), Article 2299. https://doi.org/10.3390/foods11152299
Olías, R., Rayner, T., Clemente, A., & Domoney, C. (2023). Combination of three null mutations affecting seed protein accumulation in pea (Pisum sativum L.) impacts positively on digestibility. Food Research International, 169, Article 112825. https://doi.org/10.1016/j.foodres.2023.112825
Osborne, T. B. (1924). Monographs on Biochemistry: The vegetable proteins (2nd ed.). Longmans, Green and Co.
Pesoti, A., Oliveira, B. M., Oliveira, A. C., Pompeu, D. G., Gonçalves, D. B., Marangoni, S., Silva, J. A., & Granjeiro, P. A. (2015). Extraction, purification and characterization of inhibitor of trypsin from Chenopodium quinoa seeds. Food Science and Technology, 35(4), 588–597. https://doi.org/10.1590/1678-457X.6655
Pompeu, D. G., Carvalho, A. S., Costa, O. F., Galdino, A. S., Gonçalves, D. B., Silva, J. A., & Granjeiro, P. A. (2014). Fatores antinutricionais e digestibilidade “in vitro” de folhas de Pereskia aculeata Miller. BBR - Biochemistry and Biotechnology Reports, 3(1), 1–9. https://doi.org/10.5433/2316-5200.2014v3n1p1
Pompeu, D. G., Cordeiro, H. G., Tonelli, F. C. P., Godin, A. M., Melo, I. S. F., Matsui, T. C., Rodrigues, F. F., Silva, J. A., Coelho, M. M., Machado, R. R., & Granjeiro, P. A. (2022). Chenopodin as an anti-inflammatory compound. Natural Product Research, 36(17), 4429–4432. https://doi.org/10.1080/14786419.2021.1980791
Pompeu, D. G., Mattioli, M. A., Ribeiro, R. I. M. A., Gonçalves, D. B., Magalhães, J. T., Marangoni, S., Silva, J. A., & Granjeiro, P. A. (2015). Purification, partial characterization and antimicrobial activity of Lectin from Chenopodium Quinoa seeds. Food Science and Technology, 35(4), 696–703. https://doi.org/10.1590/1678-457X.6823
Pompeu, D.-G., Pompeu, L.-G., Policarpo-Tonelli, F.-C., Moreira-dos-Santos, D., da Silva, J.-A., Granjeiro, P. A., (2016). Extraction, Purification, partial Characterization and Antimicrobial Activity of a Protease Inhibitor from Albizia niopoides seeds. International Journal of Advanced Scientific Research and Management, 1(1), 27–34. https://www.researchgate.net/publication/318531561_EXTRACTION_PURIFICATION_PARTIAL_CHARACTERIZATION_AND_ANTIMICROBIAL_ACTIVITY_OF_A_PROTEASE_INHIBITOR_FROM_Albizia_niopoides_SEEDS
Pulvento, C., Sellami, M. H., & Lavini, A. (2022). Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. Journal of the Science Food and Agriculture, 102(12), 5022–5033. https://doi.org/10.1002/jsfa.11088
Rawdkuen, S., D'Amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods, 11(13), Article 1869. https://doi.org/10.3390/foods11131869
Resendiz-Otero, M. F., Bernardino-Nicanor, A., Lugo-Magaña, O., Betanzos-Cabrera, G., González-Cruz, L., Morales-González, J. A., Acosta-García, G., Fernández-Martínez, E., Salazar-Campos, A., & Valadez-Vega, C. (2024). Purification, Structural Characterization, and Bioactivity of Amaranthus hypochondriacus Lectin. Molecules, 29(21), Article 5101. https://doi.org/10.3390/molecules29215101
Rodríguez-Sifuentes, L., Marszalek, J. E., Chuck-Hernández, C., & Serna-Saldívar, S. O. (2020). Legumes Protease Inhibitors as Biopesticides and their Defense Mechanisms against Biotic Factors. International Journal of Molecular Sciences, 21(9), Article 3322. https://doi.org/10.3390/ijms21093322
Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), Article 6. https://doi.org/10.1186/s43014-020-0020-5
Silva, J. A., Pompeu, D. G., Costa, O. F., Gonçalves, D. B., Spehar, C. R., Marangoni, S., & Granjeiro, P. A. (2015). The importance of heat against antinutritional factors from Chenopodium quinoa seeds. Food Science and Technology, 35(1), 74–82. https://doi.org/10.1590/1678-457X.6427
Silva, J. A., Pompeu, D. G., Smolka, M. B., Gozzo, F. C., Comar Jr., M., Eberlin, M. N., & Granjeiro, P. A., & Marangoni, S. (2015). Primary Structure of a Trypsin Inhibitor (Copaifera langsdorffii Trypsin Inhibitor-1) Obtained from C. langsdorffii Seeds. Journal of Biomolecular Techniques, 26(3), 90–102. https://doi.org/10.7171/jbt.15-2603-002
Silva, J. K., Veras, A. C. C., Sousa, S. M., Albuquerque, J. S. S., Ribeiro, F. P. B., Lima, N. K. S., Nascimento, L. B. S., Alves, R. R. V., Aires, R. S., Coelho, L. C. B. B., Napoleão, T. H., Paiva, P. M. G., Paixão, A. D., & Vieira, L. D. (2024). The water extract and the lectin WSMoL from the seeds of Moringa oleifera prevent the hypertension onset by decreasing renal oxidative stress. Anais da Academia Brasileira de Ciências, 96(4), Article e20231266. https://doi.org/10.1590/0001-3765202420231266
Silvestrini, V. C., Gonçalves, D. B., Granjeiro, P. A., Silva, J. A. (2017). Anti-nutritional factors and digestibility of protein in Cayocar brasiliense seeds. Food Science and Technology, 37(4), 632–639. https://doi.org/10.1590/1678-457X.28716
Souza, P. F. N. (2020). The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. International Journal of Biological Macromolecules, 164, 4638–4649. https://doi.org/10.1016/j.ijbiomac.2020.09.049
Sun, N., Liu, Y., Liu, K., Wang, S., Liu, Q., & Lin, S. (2022). Gastrointestinal fate of food allergens and its relationship with allergenicity. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3376–3404. https://doi.org/10.1111/1541-4337.12989
Tang, J., Wichers, H. J., & Hettinga, K. A. (2022). Heat-induced unfolding facilitates plant protein digestibility during in vitro static infant digestion. Food Chemistry, 375, Article 131878. https://doi.org/10.1016/j.foodchem.2021.131878
Van Damme, E. J. (2014). History of plant lectin research. In J. Hirabayashi (Ed.), Lectins: Methods and Protocols (Volum 1200, pp. 3–13). Humana Press. https://doi.org/10.1007/978-1-4939-1292-6_1
Vasconcelos, I. M., & Oliveira, J. T. A. (2004). Antinutritional properties of plant lectins. Toxicon, 44(4), 385–403. https://doi.org/10.1016/j.toxicon.2004.05.005
Vishvakarma, R., & Mishra, A. (2022). Characterization of a Novel Protease Inhibitor from the Edible Mushroom Agaricus bisporus. Protein and Peptide Letters, 29(5), 460–472. https://doi.org/10.2174/0929866529666220405161903
Wang, K., Crevel, R. W. R., & Mills, E. N. C. (2022). Assessing protein digestibility in allergenicity risk assessment: A comparison of in silico and high throughput in vitro gastric digestion assays. Food and Chemical Toxicology, 167, Article 113273. https://doi.org/10.1016/j.fct.2022.113273
Williamson, E., Ross, I. L., Wall, B. T., & Hankamer, B. (2024). Microalgae: potential novel protein for sustainable human nutrition. Trends in Plant Science, 29(3), 370–382. https://doi.org/10.1016/j.tplants.2023.08.006
Zhang, J., Wang, J., Li, M., Guo, S., & Lv, Y. (2022). Effects of heat treatment on protein molecular structure and in vitro digestion in whole soybeans with different moisture content. Food Research International, 155, Article 111115. https://doi.org/10.1016/j.foodres.2022.111115
Zhang, K., Wen, Q., Wang, Y., Li, T., Nie, B., & Zhang, Y. (2022). Study on the in vitro digestion process of green wheat protein: Structure characterization and product analysis. Food Science and Nutrition, 10(10), 3462–3474. https://doi.org/10.1002/fsn3.2947
Zhou, H., Tan, Y., & McClements, D. J. (2023). Applications of the INFOGEST in vitro digestion model to foods: a review. Annual Review Food Science and Technology, 14, 135–156. https://doi.org/10.1146/annurev-food-060721-012235
Zhu, F. (2023). Amaranth proteins and peptides: Biological properties and food uses. Food Research International, 164, Article 112405. https://doi.org/10.1016/j.foodres.2022.112405