Phenotypic and genotypic resistance of Staphylococcus aureus in fresh meats marketed in Pernambuco, Brazil

Autores

DOI:

https://doi.org/10.5327/fst.00462

Palavras-chave:

antimicrobial resistance, multidrug-resistant bacteria, food safety, animal production

Resumo

Antimicrobial resistance is a challenge for public health, exacerbated by the indiscriminate use of these agents in humans and animals. Staphylococcus aureus, frequently found in fresh meat, poses a considerable risk due to its ability to transfer resistance genes. This study assessed the phenotypic and genotypic resistance profiles of Staphylococcus aureus isolated from 120 samples of beef, pork, and chicken sold in Recife, Pernambuco, Brazil. Samples were collected from markets, butcher shops, and street markets. Phenotypic identification was conducted using catalase tests and Gram staining, with confirmation through polymerase chain reaction (PCR) by amplifying the nuc gene. The resistance profile was evaluated using the disk diffusion method for 21 antimicrobials, following Clinical and Laboratory Standards Institute guidelines. In contrast, the resistance genes blaZ, mecA, mecC, norA, norC, tet(38), and msrA were analyzed by PCR. Among the 152 Staphylococcus spp. colonies isolated, 6.67% (10/152) were confirmed as S. aureus. Of these, 70% (7/10) were isolated from pork and 30% (3/10) from chicken, with no detection in beef samples. All isolates exhibited multidrug resistance, showing universal resistance to penicillin, rifampin, tetracycline, doxycycline, erythromycin, clindamycin, and linezolid. Genotypically, all isolates carried the norC gene, while 90% (9/10) harbored tet(38), and 60% (6/10) tested positive for norA and blaZ. No detection of mecA, mecC, or msrA was observed. These results underscore the urgent need for health education promoting the rational use of antimicrobials and coordinated actions between human and animal health sectors to mitigate antimicrobial resistance, which poses a serious threat to public health.

Downloads

Não há dados estatísticos.

Referências

Abdalrahman, L. S., Wells, H., & Fakhr, M. K. (2015). Staphylococcus aureus is more prevalent in retail beef livers than in pork and other beef cuts. Pathogens, 4(2), 182–198. https://doi.org/10.3390/pathogens4020182

Alghamdi, B. Al., Al-Johani, I., Al-Shamrani, J. M., Alshamrani, H. M., Al-Otaibi, B. G., Master, K. A., & Yusof, N. Y. (2023). Antimicrobial resistance in methicillin-resistant staphylococcus aureus. Saudi Journal of Biological Sciences, 30(4), Article 103604. https://doi.org/10.1016/j.sjbs.2023.103604

Alves, V. F., Niño-Arias, F. C., Pitondo-Silva, A., Frazilio, D. A., Gonçalves, L. O., Toubas, L. C., Torres, I. M. S., Oxaran, V., Dittmann, K. K., & De Martinis, E. C. P. (2018). Molecular characterisation of Staphylococcus aureus from some artisanal Brazilian dairies. International Dairy Journal, 85, 247–253. https://doi.org/10.1016/j.idairyj.2018.06.008

Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Aragão, B. B., Trajano, S. C., Oliveira, R. P., Silva, D. M. S., Carvalho, R. G., Juliano, M. A., Pinheiro Junior, J. W., & Mota, R. A. (2021). Multiresistant zoonotic pathogens isolated from goat milk in northeastern Brazil. Comparative Immunology, Microbiology and Infectious Diseases, 79, Article 101701. https://doi.org/10.1016/j.cimid.2021.101706

Argudín, M. A., Roisin, S., Nienhaus, L., Dodémont, M., Mendonça, R., Nonhoff, C., Deplano, A., & Denis, O. (2018). Genetic diversity among Staphylococcus aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrobial Agents and Chemotherapy, 62(7), Article e00091. https://doi.org/10.1128/AAC.00091-18

Brasil (2021a). Confira dados mundiais sobre resistência microbiana: considerada um grave problema de saúde pública, a resistência microbiana aos antimicrobianos causa um número expressivo de óbitos e prejuízos à economia. Agência Nacional de Vigilância Sanitária. Retrieved June 24, 2023, from https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/confira-dados-mundiais-sobre-resistencia-microbiana

Brasil (2021b). Nota Técnica GVIMS/GGTES/ANVISA Nº 05/202: Orientações para prevenção e controle da disseminação de microrganismos multirresistentes em serviços de saúde no contexto da pandemia da COVID-19. Agência Nacional de Vigilância Sanitária. Retrieved August 21, 2023, from https://www.gov.br/anvisa

Brasil (2021c). Vigilância Epidemiológica das Doenças de Transmissão Hídrica e Alimentar: Manual de Treinamento. Ministério da Saúde. Retrieved June, 25, 2025, from https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/doencas-transmitidas-por-alimentos-dta/manual_dtha_2021_web.pdf

Brasil (2022). Programa de Vigilância e Monitoramento da Resistência aos Antimicrobianos no Âmbito da Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Retrieved September 10, 2023, from https://www.gov.br

Carvalho, A. F., Miyashiro, S., Nassar, A. F. C., Noda, A., Gabriel, D. T., & Baldassi, L. (2012). Caracterização molecular e fenotípica de estirpes de Escherichia coli produtoras de shiga-toxina (STEC) não-O157 de fezes e carcaças bovinas. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 64(4), 881–886. https://doi.org/10.1590/S0102-09352012000400014

Cerqueira, E. S., & Almeida, R. C. C. (2013). Staphylococcus aureus resistente à meticilina (MRSA) em alimentos de origem animal: uma revisão sistemática. Revista do Instituto Adolfo Lutz, 72(4), 268–281. https://doi.org/10.18241/0073-98552013721574

Clinical and Laboratory Standards Institute. (2020). Performance standards for antimicrobial disk and dilution susceptibility test for bacteria isolated from animals (5th ed.). CLSI.

Costa, S. S., Viveiros, M., Amaral, L., & Couto, I. (2013). Multidrug efflux pumps in Staphylococcus aureus: An update. The Open Microbiology Journal, 7, 59–71. https://doi.org/10.2174/1874285801307010059

Costa, W. L. R., Ferreira, J. S., Carvalho, J. S., Cerqueira, E. S., Oliveira, L. C., & Almeida, R. C. C. (2015). Methicillin-Resistant Staphylococcus Aureus in Raw Meats and Prepared Foods in Public Hospitals in Salvador, Bahia, Brazil. Journal of Food Science, 80(1), M147–M150. https://doi.org/10.1111/1750-3841.12723

Crespo-Piazuelo, D., & Lawlor, P. G. (2021). Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Irish Veterinary Journal, 74(1), Article 21. https://doi.org/10.1186/s13620-021-00200-7

Dittmann, K. K., Chaul, L. T., Lee, S. H. I., Corassin, C. H., Oliveira, C. A. F., De Martinis, E. C. P., Alves, V. F., Gram, L., & Oxaran, V. (2017). Staphylococcus Aureus in Some Brazilian Dairy Industries: Changes of Contamination and Diversity. Frontiers in Microbiology, 8, Article 2049. https://doi.org/10.3389/fmicb.2017.02049

Džidić, S., Šušković, J., & Kos, B. (2008). Antibiotic resistance mechanisms in bacteria: Biochemical and genetic aspects. Food Technology and Biotechnology, 46(1), 11–21. https://hrcak.srce.hr/file/34842

Fagundes, H., Barchesi, L., Nader Filho, A., Ferreira, L. M., & Oliveira, C. A. F. (2010). Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil. Brazilian Journal of Microbiology, 41(2), 376–380. https://doi.org/10.1590/S1517-83822010000200018

Ferreira, J. S., Costa, W. L. R., Cerqueira, E. S., Carvalho, J. S., Oliveira, L. C., & Almeida, R. C. C. (2014). Food handler-associated methicillin-resistant Staphylococcus aureus in public hospitals in Salvador, Brazil. Food Control, 37, 395–400. https://doi.org/10.1016/j.foodcont.2013.09.062

Floyd, J. L., Smith, K. P., Kumar, S. H., Floyd, J. T., & Varela, M. F. (2010). LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 54(12), 5406–5412. https://doi.org/10.1128/aac.00580-10

Freitas, M. F. L., Mota, R. A., Vilela, S. M. O., Sena, M. J., & Bezerra, R. (2001). Cepas de Staphylococcus spp. isoladas de carcaças de frango comercializadas na cidade do Recife-PE, Brasil. Ciência Animal Brasileira, 2(2), 139–145. https://doi.org/10.5216/cab.v2i2.261

Frosini, S. M., Bond, R., McCarthy, A. J., Feudi, C., Schwarz, S., Lindsay, J. A., & Loeffler, A. (2020). Genes on the move: In vitro transduction of antimicrobial resistance genes between human and canine staphylococcal pathogens. Microorganisms, 8(12), Article 2031. https://doi.org/10.3390/microorganisms8122031

García-Álvarez, L., Holden, M. T. G., Lindsay, H. L., Webb, C. R., Brown, D. F. J., Curran, M. D., Walpole, E., Brooks, K. M., Pickard, D. J., Teale, C., Parkhill, J., Bentley, S. D., Edwards, G. F., Girvan, E. K., Kearns, A. M., Pichon, B., Hill, R. L. R., Larsen, A. R., Skov, R. L., … Holmes, M. A. (2011). Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. The Lancet Infectious Diseases, 11(8), 595–603. https://doi.org/10.1016/S1473-3099(11)70126-8

González-Domínguez, M. S., Carvajal, H. D., Calle-Echeverri, D. A., & Chinchilla-Cárdenas, D. (2020). Molecular detection and characterization of the mecA and nuc genes from Staphylococcus species (S. aureus, S. pseudintermedius, and S. schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles. Frontiers in Veterinary Science, 7, Article 376. https://doi.org/10.3389/fvets.2020.00376

Húngaro, H. M., Caturla, M. Y. R., Horita, C. N., Furtado, M. M., & Sant’Ana, A. S. (2016). Blown pack spoilage in vacuum-packaged meat: A review on clostridia as causative agents, sources, detection methods, contributing factors and mitigation strategies. Trends in Food Science & Technology, 52, 123–138. https://doi.org/10.1016/j.tifs.2016.04.010

Howden, B. P., Giulieri, S. G., Lung, T. W. F., Baines, S. L., Sharkey, L. K., Lee, J. Y. H., Hachani, A., Monk, I. R., & Stinear T. P. (2023). Staphylococcus aureus host interactions and adaptation. Nature Reviews Microbiology, 21(6), 380–395. https://doi.org/10.1038/s41579-023-00852-y

Jia, K., Fang, T., Wang, X., Liu, Y., Sun, W., Wang, Y, Ding, T., Wang, J., Li, C., Xu, D., Qiu, J, Liu, Q., & Dong, Q. (2020). Antibiotic resistance patterns of Staphylococcus aureus isolates from retail foods in mainland China: A meta-analysis. Foodborne Pathogens and Disease, 17(5), 296–307. https://doi.org/10.1089/fpd.2019.2686

Kadariya, J., Smith, T. C., & Thapaliya, D. (2014). Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. Biomedical Research International, 2014, Article 827965. https://doi.org/10.1155/2014/827965

Kahn, L. W. (2016). One health and the politics of antimicrobial resistance. Johns Hopkins University Press.

Koneman, E. W., Procop, G. W., Church, D. L., Hall, G. S., Janda, W. M., Schreckenberger, P. C., & Woods, G. L. (2018). Diagnóstico Microbiológico - Texto e Atlas (7th ed.). Guanabara Koogan.

Kyselková, M., Jirout, J., Vrchotová, N., Schmitt, H., & Elhottová, D. (2015). Spread of tetracycline resistance genes at a conventional dairy farm. Microbial Biotechnology, 6, Article 536. https://doi.org/10.3389/fmicb.2015.00536

Lee, S. H., Yun, J.-W., Lee, J. H., Jung, D. H., & Lee, D. H. (2021). Trends in recent waterborne and foodborne disease outbreaks in South Korea, 2015-2019. Osong Public Health and Research Perspectives, 12(2), 73–79. https://doi.org/10.24171/j.phrp.2021.12.2.04

Liang, B., Xiong, Z., Liang, Z., Zhang, C., Cai, H., Long, Y., Gao, F., Wang, J., Deng, Q., Zhong, H., Xie, Y., Huang, L., Gong, S., & Zhou, Z. (2022). Genomic basis of occurrence of cryptic resistance among oxacillin- and cefoxitin-susceptible mecA-positive Staphylococcus aureus. Microbiology Spectrum, 10(3), Article e00291-22. https://doi.org/10.1128/spectrum.00291-22

Lima, C. C., Benjamim, S. C. C., & Santos, R. F. S. (2017). Mecanismo de resistência bacteriana frente aos fármacos: Uma revisão. Cuidarte Enfermagem, 11(1), 105–113. https://pesquisa.bvsalud.org/portal/resource/pt/bde-31632

Luz, L. E., Evêncio Neto, J., Mendonça, F. S., & Souza, I. N. (2017). Perfil microbiológico da carne bovina in natura comercializada no município de Picos, Piauí. Higiene Alimentar, 31(270–271), 124–129. https://www.bvs-vet.org.br/vetindex/periodicos/higiene-alimentar/31-(2017)-270-271/perfil-microbiologico-da-carne-bovina-in-natura-comercializada-no-muni/

Martineau, F., Picard, F. J., Lansac, N., Ménard, C., Roy, P. H., Ouellette, M., & Bergeron, M. G., (2000). Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus andStaphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 44(2), 231–238. https://doi.org/10.1128/AAC.44.2.231-238.2000

Merghni, A., Hamdi, H., Abdallah, M. B., Al-Hasawi, Z. M., Al-Quwaie, D. A., & Abid-Essefi, S. (2023). Detection of methicillin-resistant Staphylococcus aureus among foodborne pathogenic strains and assessment of their adhesion ability and cytotoxic effects in HCT-116 cells. Foods, 12(5), Article 974. https://doi.org/10.3390/foods12050974

Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., Marusza, W. (2022). Molecular mechanisms of drug resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23(15), Article 8088. https://doi.org/10.3390/ijms23158088

Monte, D. F. M., Lopes Júnior, W. D., Abley, M., Gebreyes, W. A., & Oliveira, C. J. B. (2018). Antimicrobial resistance and genotypic relatedness of environmental staphylococci in semi-extensive dairy farms. Veterinary and Animal Science, 6, 103–106. https://doi.org/10.1016/j.vas.2018.07.007

Moreira, M. A. S., Ferreira, A. B., Trindade, T. F. S. L., Reis, A. L. O., & Moraes, C. A. (2008). Resistência a antimicrobianos dependente do sistema de efluxo multidrogas em Escherichia coli isoladas de leite mastítico. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 60(6), 1307–1314. https://doi.org/10.1590/S0102-09352008000600003

Mota, R. A., Silva, K. P. C., Freitas, M. F. L., Porto, W. J. N., & Silva, L. B. G. (2005). The abuse of antimicrobials drugs and the appearance of resistance. Brazilian Journal of Veterinary Research and Animal Science, 42(6), 465–470. https://doi.org/10.11606/issn.1678-4456.bjvras.2005.26406

Nakagawa, S., Taneike, I., Mimura, D., Iwakura, N., Nakayama, T., Emura, T., Kitatsuji, M., Fujimoto, A., & Yamamoto, T. (2005). Gene sequences and specific detection for Panton-Valentine leukocidin. Biochemical and Biophysical Research Communications, 328(4), 995–1002. https://doi.org/10.1016/j.bbrc.2005.01.054

Paterson, G. K., Larsen, A. R., Robb, A., Edwards, G. E., Pennycott, T. W., Foster, G., Mot, D., Hermans, K., Baert, K., Peacock, S. J., Parkhill, J., Zadoks, R. N., & Holmes, M. A. (2012). The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. Journal of Antimicrobial Chemotherapy, 67(12), 2809–2813. https://doi.org/10.1093/jac/dks329

Rajaei, M., Moosavy, M.-H., Gharajalar, S. N., & Khatibi, S. A. (2021). Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: Phenotypic and genotypic study. BMC Microbiology, 21(1), Article 272. https://doi.org/10.1186/s12866-021-02326-8

Sawant, A. A., Gillespie, B. E., & Oliver, S. P. (2009). Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Veterinary Microbiology, 134(1–2), 73–81. https://doi.org/10.1016/j.vetmic.2008.09.006

Shore, A. C., Deasy, E. C., Slickers, P. Brennan, G., O’Connell, B., Monecke, S., Ehricht, R., & Coleman, D. C. (2011). Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(8), 3765–3773. https://doi.org/10.1128/AAC.00187-11

Silva, A. C., Rodrigues, M. X., & Silva, N. C. C. (2020). Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: a review. Brazilian Journal of Microbiology, 51(1), 347–356. https://doi.org/10.1007/s42770-019-00168-1

Silva, J. G., Araujo, W. J., Leite, E. L., Dias, L. M., Vasconcelos, P. C., Silva, N. M. V., Oliveira, R. P., Sena, M. J., Oliveira, C. J. V., & Mota, R. A. (2021). First report of a livestock-associated methicillin-resistant Staphylococcus aureus ST126 harbouring the mecC variant in Brazil. Transboundary and Emerging Diseases, 68(3), 1019–1025. https://doi.org/10.1111/tbed.13771

Silva, J. G., Camargo, A. C., Melo, R. P. B., Aragão, B. B., Oliveira, J. M. B., Sena, M. J., Nero, L. A., & Mota, R. A. (2022). mecA positive Staphylococcus spp. in bovine mastitis, milkers, milking environment, and the circulation of different MRSA clones at dairy cows farms in the Northeast region of Brazil. Ciência Rural, 52(3), e20210008. https://doi.org/10.1590/0103-8478cr20210008

Soares, L. S., Almeida, R. C. C., Cerqueira, E. S., Carvalho, J. S., & Nunes, I. L. (2012). Knowledge, attitudes and practices in food safety and the presence of coagulase-positive staphylococci on hands of food handlers in the schools of Camaçari, Brazil. Food Control, 27(1), 206–213. https://doi.org/10.1016/j.foodcont.2012.03.016

Strommenger, B., Layer, F., & Werner, G. (2018). Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Workers in the Food Industry. In A. Fetsch (Ed.), Staphylococcus aureus (pp. 163–188). Academic Press. https://doi.org/10.1016/B978-0-12-809671-0.00009-7

Truong-Bolduc, Q. C., Dunman, P. M., Strahilevitz, J., Projan, S. J., & Hooper, D. C. (2005). MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. Journal of Bacteriology, 187(7), 2395–2405. https://doi.org/10.1128/jb.187.7.2395-2405.2005

Truong-Bolduc, Q. C., Strahilevitz, J., & Hooper, D. C. (2006). NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(3), 1104–1107. https://doi.org/10.1128/aac.50.3.1104-1107.2006

Truong-Bolduc, Q. C., Zhang, X., & Hooper, D. C. (2003). Characterization of NorR Protein, a Multifunctional Regulator of norA Expression in Staphylococcus aureus. Journal of Bacteriology, 185(10), 3127–3138. https://doi.org/10.1128/jb.185.10.3127-3138.2003

Vehovar, V., Toepoel, V., & Steinmetz, S. (2016). Non-Probability Sampling. In C. Wolf, D. Joye, T. W. Smith, & Y. C. Fu (Eds.), The SAGE Handbook of Survey Methodology (pp. 327–343). SAGE Publications.

Virdis, S., Scarano, C. Cossu, F., Spanu, V., Spanu, C., & Santis, E. P. L. (2010). Antibiotic resistance in Staphylococcus aureus and coagulase negative staphylococci isolated from goats with subclinical mastitis. Veterinary Medicine International, 2010, Article 517060. https://doi.org/10.4061/2010/517060

World Health Organization. (2022, December 9). Global antimicrobial resistance and use surveillance system (‎GLASS)‎ report: 2022. Retrieved January 20, 2023, from https://www.who.int/publications/i/item/9789240062702

Wu, S., Huang, J., Wu, Q., Zhang, J., Zhang, F., Yang, X., Wu, H., Zeng, H., Chen, M., Ding, Y., Wang, J., Lei, T., Zhang, S., & Xue, L. (2018). Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity. Frontiers in Microbiology, 9, Article 2767. https://doi.org/10.3389/fmicb.2018.02767

Downloads

Publicado

2025-07-14

Como Citar

Silva, Órion P. da, Leite, D. P. de S. B. M., Barbosa, I. C., Silva, V. V. da, Silva, M. M. de O., Silva, A. P. da, Moreira, M. A. S., Moura, A. P. B. L. de, Barros, M. . R., & Mota, R. A. (2025). Phenotypic and genotypic resistance of Staphylococcus aureus in fresh meats marketed in Pernambuco, Brazil. Food Science and Technology, 45. https://doi.org/10.5327/fst.00462

Edição

Seção

Artigos Originais