Microencapsulation by spray drying of the Lactobacillus plantarum P2 for potential application as a probiotic

Autores

  • Viviany Santos Chagas Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0009-0008-2247-7949
  • Vinícius Souza Tarabal Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0002-8736-8531
  • Felipe Ferreira Silva Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0001-7976-3526
  • Hiure Gomes Ramos Meira Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0001-8563-3170
  • Adriano Guimarães Parreira Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0002-7770-7165
  • José Antônio da Silva Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0001-9134-1211
  • Juliana Teixeira de Magalhães Universidade Federal de São João del-Rei, Microbiology Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0002-0532-7323
  • Paulo Afonso Granjeiro Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0003-0322-0861
  • Letícia Fernandes de Oliveira Universidade Federal de São João del-Rei, Laboratory of Bioprocesses and Metabolic Biochemistry, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil https://orcid.org/0000-0002-0836-0276
  • Daniel Bonoto Gonçalves Universidade Federal de São João del-Rei, Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0002-8178-1026

DOI:

https://doi.org/10.5327/fst.458

Palavras-chave:

probiotics, microencapsulation, spray drying

Resumo

Probiotics are microorganisms that, when ingested in adequate amounts, confer benefits to the organism. The biggest concerns with these products are storage, stability, and survival of the microorganisms that make up these products. Spray-drying processes are an excellent alternative for drying these products because, through microencapsulation, the stability, survival, and resistance to gastric juice and bile salts are preserved. This work evaluated the influence of entry temperature and arabic gum concentration in the spray drying of Lactobacillus plantarum P2. Encapsulated cells were characterized for survival, resistance to gastrointestinal conditions, and particle morphology. Both parameters significantly impacted the spray-drying process. An increase in arabic gum concentration resulted in a higher survival rate, while elevated temperatures caused a reduction in survival rates. As for the resistance response to gastrointestinal conditions, only the quadratic temperature was statistically significant. By scanning electron microscopy, we observed the microencapsulation of the microorganism. An optimum estimated point was reached for drying the P2 strain at an entry temperature of 105°C and an arabic gum concentration of 21%, obtaining a process with a higher survival rate and better resistance to gastrointestinal conditions, reinforcing the potential application of this microorganism as a probiotic.

Downloads

Não há dados estatísticos.

Referências

Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M. M., Attia, H., & Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 108, 719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155

Agência Nacional de Vigilância Sanitária. (2018). Resolução da Diretoria Colegiada – RDC Nº 241, de 26 de julho de 2018. Dispõe sobre os requisitos para comprovação da segurança e dos benefícios à saúde dos probióticos para uso em alimentos. Diário Oficial da União. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/34379910/do1-2018-07-27-resolucao-da-diretoria-colegiada-rdc-n-241-de-26-de-julho-de-2018-34379900

Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17–24. https://doi.org/10.1016/j.lwt.2012.08.003

Anselmo, G. C. S., Mata, M. E. R. M. C., Arruda, P. C., & Sousa, M. C. (2006). Determinação da higroscopicidade do cajá em pó por meio da secagem por atomização. Revista de Biologia e Ciências Da Terra, 6(2), 58–65. http://www.redalyc.org/articulo.oa?id=50060207

Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT - Food Science and Technology, 63(1), 685–690. https://doi.org/10.1016/j.lwt.2015.03.034

Benchabane, S., Subirade, M., & Vandenberg, G. W. (2007). Production of BSA-loaded alginate microcapsules: Influence of spray dryer parameters on the microcapsule characteristics and BSA release. Journal of Microencapsulation, 24(6), 565–576. https://doi.org/10.1080/02652040701452917

Boscarioli, M. P. M. (2010). Influência de prebióticos na encapsulação de bactérias probióticas adicionadas em sorvete [Master’s dissertation, Centro Universitário do Instituto Mauá de Tecnologia]. Instituto Mauá. https://maua.br/files/dissertacoes/influencia-de-prebioticos-na-encapsulacao-de-bacterias-probioticas-adicionadas-em-sorvete.pdf

Broeckx, G., Vandenheuvel, D., Claes, I. J. J., Lebeer, S., & Kiekens, F. (2016). Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. International Journal of Pharmaceutics, 505(1–2), 303–318. https://doi.org/10.1016/j.ijpharm.2016.04.002

Buriti, F. C. A., Castro, I. A., & Saad, S. M. I. (2010). Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. International Journal of Food Microbiology, 137(2–3), 121–129. https://doi.org/10.1016/j.ijfoodmicro.2009.11.030

Bustamante, M., Villarroel, M., Rubilar, M., & Shene, C. (2015). Lactobacillus acidophilus La-05 encapsulated by spray drying: Effect of mucilage and protein from flaxseed (Linum usitatissimum L.). LWT - Food Science and Technology, 62(2), 1162–1168. https://doi.org/10.1016/j.lwt.2015.02.017

Castro-Cislaghi, F. P., Fritzen-Freire, C. B., & Sant’Anna, E. S. (2012). Potencial do soro de leite líquido como agente encapsulante de Bifidobacterium Bb-12 por spray drying: comparação com goma arábica. Ciência Rural, 42(9), 1694–1700. https://doi.org/10.1590/S0103-84782012005000067

Corpas-Iguarán, E. J., Triviño-Valencia, J., Tapasco-Alzate, O., & Garcés-Gómez, Y. A. (2023). Evaluation of viability and survival of free and maltodextrin microencapsulated Bifidobacterium animalis subsp. animalis through spray-drying process. Communications in Science and Technology, 8(2), 190–197. https://doi.org/10.21924/cst.8.2.2023.1239

Dullius, A., Goettert, M. I., & Souza, C. F. V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42, 58–74. https://doi.org/10.1016/j.jff.2017.12.063

Eckert, C., Serpa, V. G., Santos, A. C. F., Costa, S. M., Dalpubel, V., Lehn, D. N., & Souza, C. F. V. (2017). Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT - Food Science and Technology, 82, 176–183. https://doi.org/10.1016/j.lwt.2017.04.045

Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X. D., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11–17. https://doi.org/10.1016/j.jfoodeng.2016.10.017

Kavitake, D., Kandasamy, S., Devi, P. B., & Shetty, P. H. (2018). Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review. Food Bioscience, 21, 34–44. https://doi.org/10.1016/j.fbio.2017.11.003

Khalid, S. A., Musa, A. M., Saeed, A. M., Abugroun, E. A., Ahmed, E. O. S., Ghalib, M. B., Elnima, E. I., Alkarib, S. Y., Abdelsalam, T. M., Abdelgader, A., Phillips, G. O., & Phillips, A. O. (2014). Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney. Bioactive Carbohydrates and Dietary Fibre, 3(2), 71–76. https://doi.org/10.1016/j.bcdf.2014.01.005

Lamont, J. R., Wilkins, O., Bywater-Ekegärd, M., & Smith, D. L. (2017). From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biology and Biochemistry, 111, 1–9. https://doi.org/10.1016/j.soilbio.2017.03.015

Leone, R. S., Andrade, E. F., Ellendersen, L. N., Cunha, A. T., Martins, A. M. C., Granato, D., & Masson, M. L. (2017). Evaluation of dried yacon (Smallanthus sonchifolius) as an efficient probiotic carrier of Lactobacillus casei LC-01. LWT, 75, 220–226. https://doi.org/10.1016/j.lwt.2016.08.027

Lian, W.-C., Hsiao, H.-C., & Chou, C.-C. (2002). Survival of Bifidobacteria after spray-drying. International Journal of Food Microbiology, 74(1–2), 79–86. https://doi.org/10.1016/S0168-1605(01)00733-4

Madhu, A. N., & Prapulla, S. G. (2014). Evaluation and Functional Characterization of a Biosurfactant Produced by Lactobacillus plantarum CFR 2194. Applied Biochemistry and Biotechnology, 172(4), 1777–1789. https://doi.org/10.1007/s12010-013-0649-5

Madureira, A. R., Amorim, M., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2011). Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 44(1), 465–470. https://doi.org/10.1016/j.foodres.2010.09.010

Nunes, G. L., Etchepare, M. A., Cichoski, A. J., Zepka, L. Q., Lopes, E. J., Barin, J. S., Flores, É. M. M., Silva, C. B., & Menezes, C. R. (2018). Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT, 89, 128–133. https://doi.org/10.1016/j.lwt.2017.10.032

Oliveira, A. C. (2006). Viabilidade de Lactobacillus acidophilus e Bifidobacterium lactis, microencapsulados por coacervação, seguida de secagem por spray drying e leite de jorro [Marter’s dissertation, Universidade de São Paulo]. Biblioteca Digital USP. https://doi.org/10.11606/D.60.2007.tde-10052007-103644

Rajam, R., & Subramanian, P. (2022). Encapsulation of probiotics: past, present and future. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), Article 46. https://doi.org/10.1186/s43088-022-00228-w

Raman, J., Kim, J.-S., Choi, K. R., Eun, H., Yang, D., Ko, Y.-J., & Kim, S.-J. (2022). Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. International Journal of Molecular Sciences, 23(14), Article 7784. https://doi.org/10.3390/ijms23147784

Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28(2), 109–116. https://doi.org/10.1016/j.bej.2005.06.001

Sabo, S. S., Vitolo, M., González, J. M. D., & Oliveira, R. P. S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527–536. https://doi.org/10.1016/j.foodres.2014.07.041

Shori, A. B. (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, 4(4), 423–431. https://doi.org/10.1016/j.bcab.2015.09.010

Stunda-Zujeva, A., Irbe, Z., & Berzina-Cimdina, L. (2017). Controlling the morphology of ceramic and composite powders obtained via spray drying – A review. Ceramics International, 43(15), 11543–11551. https://doi.org/10.1016/j.ceramint.2017.05.023

Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009

Wang, A., & Zhong, Q. (2024). Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Comprehensive Reviews in Food Science and Food Safety, 23(1), Article e13287. https://doi.org/10.1111/1541-4337.13287

Zago, M., Fornasari, M. E., Carminati, D., Burns, P., Suàrez, V., Vinderola, G., Reinheimer, J., & Giraffa, G. (2011). Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiology, 28(5), 1033–1040. https://doi.org/10.1016/j.fm.2011.02.009

Downloads

Publicado

2025-08-27

Como Citar

Chagas, V. S., Tarabal, V. S., Silva, F. F., Meira, H. G. R., Parreira, A. G., Silva, J. A. da, Magalhães, J. T. de, Granjeiro, P. A., Oliveira, L. F. de, & Gonçalves, D. B. (2025). Microencapsulation by spray drying of the Lactobacillus plantarum P2 for potential application as a probiotic. Food Science and Technology, 45. https://doi.org/10.5327/fst.458

Edição

Seção

Artigos Originais