Effects of biopesticides on the management of Myzus persicae Sulzer and Phenacoccus manihoti
DOI:
https://doi.org/10.5327/fst.00269%20Palavras-chave:
biopesticide, integrated pest management, GuyanaResumo
Aphids (Myzus persicae Sulzer) and mealybugs (Phenacoccus manihoti) are two economically important pests affecting agricultural crops in Guyana. The principal mode of control is the application of synthetic insecticides, which can be prejudicial on the environment and human health. Alternatively, these pests can be controlled using plant extracts with insecticidal and repellent properties. This article highlights the effects of three plant extracts obtained from locally cultivated crops in Guyana. Gas chromatography-mass spectrometry analysis was performed to identify the chemical compounds present in each extract with high insecticidal activity against aphids and mealy bugs revealing the presence of 8, 15, and 7 chemical compounds with “eucalyptol” common to all extracts. Laboratory bioassays were conducted under environmental conditions to determine the efficacy of methanol extracts obtained from Zingiber officinale rhizome, Mentha viridis, and Jatropha curcas leaves in controlling M. persicae Sulzer and P. manihoti using the leaf dip method. Results obtained indicated that the three plant extracts were significantly (p < 0.05) toxic to M. persicae Sulzer and P. manihoti after 48 h exposure.
Downloads
Referências
Aarthi, K., Shanthi, M., Srinivasan, G., Vellaikumar, S., & Hemalatha, G. (2022). Repellent toxicity of mint essential oils against rice weevil, Sitophilus oryzae L. The Pharma Innovation Journal, 11(9S), 362-368.
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.
Abdoul Habou, Z., Haougui, A., Mergeai, G., Haubruge, E., Toudou, A., & Verheggen, F. (2011). Insecticidal effect of Jatropha curcas oil on the aphid Aphis fabae (Hemiptera: Aphididae) and on the main insect pests associated with cowpeas (Vigna unguiculata) in Niger. Tropicultura, 29(4), 225-229.
Abeysekera, W., Illeperuma, C. K., Amunugoda, P., & Wijeratnam, S. W. (2005). Comparison of ginger varieties dried at different temperatures for oil and oleoresin contents. Sri Lankan Journal of Agricultural Sciences, 42, 34-42.
Adeyemi, M. M. H. (2010). The potential of secondary metabolites in plant material as deterents against insect pests: A review. African Journal of Pure Applied Chemistry, 4(11), 243-246.
Al-Ghanim, K. A., Krishnappa, K., Pandiyan, J., Nicoletti, M., Gurunathan, B., & Govindarajan, M. (2023). Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors. Agriculture, 13(4), 779. https://doi.org/10.3390/agriculture13040779
Benelli, G., Govindarajan, M., Rajeswary, M., Vaseeharan, B., Alyahya, S. A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Maggi, F. (2018). Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicology and Environmental Safety, 148, 781-786. https://doi.org/10.1016/j.ecoenv.2017.11.044
Biopesticide Data Base (BPDB). (2016). A comprehensive database of substances that includes naturally occurring chemicals, pheromones, bacteria, fungi and insect predators. Retrieved from https://sitem.herts.ac.uk/aeru/bpdb/Reports/2404.htm.
Çakır, A., Özer, H., Aydın, T., Kordali, Ş., Çavuşoglu, A. T., Akçin, T., Mete, E., & Akçin, A. (2016). Phytotoxic and Insecticidal Properties of Essential Oils and Extracts of Four Achillea Species. Records of Natural Products, 10(2), 154-167.
Chen, W., & Viljoen, A. M. (2010). Geraniol: a review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643-651. https://doi.org/10.1016/j.sajb.2010.05.008
Chen, X., Chen, R., & Luo, Z. (2017). Chemical composition and insecticidal properties of essential oil from aerial parts of Mosla soochowensis against two grain storage insects. Tropical Journal of Pharmaceutical Research, 16(4), 905-910. https://doi.org/10.4314/tjpr.v16i4.23
Chu, S.-S., Liu, Z.-L., Du, S.-S., & Deng, Z.-W. (2012). Chemical composition and insecticidal activity against Sitophilus zeamais of the essential oils derived from Artemisia giraldii and Artemisia subdigitata. Molecules, 17(6), 7255-7265. https://doi.org/10.3390/molecules17067255
Dancewicz, K., Szumny, A., Wawrzeńczyk, C., & Gabryś, B. (2020). Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. International Journal of Molecular Sciences, 21(21), 8029. https://doi.org/10.3390/ijms21218029
Doshi, G., Sherje, A., Somani, R., Chaskar, P., Zine, S., Nalawade, V., Ved, H., Thakkar, A., & Matthews, B. (2020). A Mini Guide LC-MS and GC-MS Techniques: A Tool for Phytoconstituents Evaluation of Plant Extracts. BP International. https://doi.org/10.9734/mono/978-93-90149-30-8
Foko, G. A. D., Tchakouan, A. M., Henri, A. B. E., Zeukeng, F., Awono-ambene, H. P., Njiokou, F., & Tamesse, J. L. (2018). Chemical composition and toxicity of Zingiber officinale (Roscoe, 1807) (Zingiberaceae) essential oil on the aquatic stages of the malaria vector Anopheles coluzzii. International Research Journal of Public and Environmental Health, 5(2), 25-31. https://doi.org/10.15739/irjpeh.18.005
Govindarajan, M., & Benelli, G. (2016). α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitology Research, 115(7), 2771-2778. https://doi.org/10.1007/s00436-016-5025-2
Hameed, I. H., Hussein, H. J., Kareem, M. A., & Hamad, N. S. (2015). Identification of five newly described bioactive chemical compounds in methanolic extract of Mentha viridis by using gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy, 7(7), 107-125.
Hull, R. (2014). Plant to plant movement. Plant Virology, 669-751. https://doi.org/10.1016/B978-0-12-384871-0.00012-1
Kang, Z.-W., Liu, F.-H., Zhang, Z.-F., Tian, H.-G., & Liu, T.-X. (2018). Volatile β-ocimene can regulate developmental performance of peach aphid Myzus persicae through activation of defense responses in Chinese cabbage Brassica pekinensis. Frontiers in Plant Science, 9, 708. https://doi.org/10.3389%2Ffpls.2018.00708
Karr, L. L., & Coats, J. R. (1988). Insecticidal properties of d-limonene. Journal of Pesticide Science, 13(2), 287-290. https://doi.org/10.1584/jpestics.13.287
Langsi, J. D., Nukenine, E. N., Oumarou, K. M., Moktar, H., Fokunang, C. N., & Mbata, G. N. (2020). Evaluation of the insecticidal activities of α-Pinene and 3-Carene on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Insects, 11(8), 540. https://doi.org/10.3390/insects11080540
Lengai, G. M. W., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239
Li, H. Y., Chen, X. B., Liu, Q. Z., & Liu, Z. L. (2017). Chemical composition and insecticidal properties of the essential oil of Bidens frondosa L (Asteraceae) against booklice (Liposcelis bostrychophila). Tropical Journal of Pharmaceutical Research, 16(1), 171-177. https://doi.org/10.4314/tjpr.v16i1.23
Liu, P., Liu, X.-C., Dong, H.-W., Liu, Z.-L., Du, S.-S., & Deng, Z.-W. (2012). Chemical composition and insecticidal activity of the essential oil of Illicium pachyphyllum fruits against two grain storage insects. Molecules, 17(12), 14870-14881. https://doi.org/10.3390/molecules171214870
Liu, Z., Li, Q. X., & Song, B. (2022). Pesticidal activity and mode of action of monoterpenes. Journal of Agricultural and Food Chemistry, 70(15), 4556-4571. https://doi.org/10.1021/acs.jafc.2c00635
Lull, C., Gil-Ortiz, R., & Cantín, Á. (2023). A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Applied Sciences, 13(9), 5622. https://doi.org/10.3390/app13095622
Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant–herbivore chemical interactions. Trends in Plant Science, 19(1), 29-35. https://doi.org/10.1016/j.tplants.2013.10.002
Odimegwu, J. I., Odukoya, O., Yadav, R. K., Chanotiya, C. S., Ogbonnia, S., & Sangwan, N. S. (2013). A new source of elemol rich essential oil and existence of multicellular oil glands in leaves of the Dioscorea species. The Scientific World Journal, 2013, 943598. https://doi.org/10.1155/2013/943598
Ogunwande, I. A., Osunsam, A. A., Sotubo, S. E., & Lawal, O. A. (2017). Chemical constituents and insecticidal activity of essential oil of Paullinia pinnata L (Sapindaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 16(5), 455-462.
Ojianwuna, C. C., & Enwemiwe, V. N. (2022). Insecticidal effectiveness of naphthalene and its combination with kerosene against the emergence of Aedes aegypti in Ika North East, LGA, Delta State, Nigeria. Parasite Epidemiology and Control, 18, e00259. https://doi.org/10.1016/j.parepi.2022.e00259
Opender, K., Suresh, W., Dhaliwal, G. S. (2008). Essential Oils as Green Pesticides: Potential and Constraints. Insect Biopesticide Research Centre. Biopesticides International, 4(1), 63-84.
Opender, O. K., & Walia, S. (2009). Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. CABI Reviews, 4, 1-30. https://doi.org/10.1079/PAVSNNR20094049
Papulwar, P. P., Rathod, B. U., & Dattagonde, N. R. (2018). Studies on insecticidal properties of citronella grass (lemon grass) essential oils against gram pod borer (Helicoverpa armigera). Studies, 2(2), 44-46.
Paramasivam, M., & Selvi, C. (2017). Laboratory bioassay methods to assess the insecticide toxicity against insect pests-A review. Journal of Entomology and Zoology Studies, 5(3), 1441-1445.
Porto, C., Stüker, C. Z., Mallmann, A. S., Simionatto, E., Flach, A., Canto-Dorow, T. do, Silva, U. F. da, Dalcol, I. I., & Morel, A. F. (2010). (R)-(-)-carvone and (1R, 4R)-trans-(+)-dihydrocarvone from poiretia latifolia vogel. Journal of the Brazilian Chemical Society, 21(5), 782-786. https://doi.org/10.1590/S0103-50532010000500003
Shahnaz, S., & Mohammed, A. (2015). Chemical composition of volatile oil of the rhizome of Zingiber officinale Roscoe and its antimicrobial activity. World Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 741-752.
Slimane, B. B., Ezzine, O., Dhahri, S., & Jamaa, M. L. B. (2014). Essential oils from two Eucalyptus from Tunisia and their insecticidal action on Orgyia trigotephras (Lepidotera, Lymantriidae). Biological Research, 47(1), 29. https://doi.org/10.1186/0717-6287-47-29
Tabari, M. A., Youssefi, M. R., Esfandiari, A., & Benelli, G. (2017). Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Research in Veterinary Science, 114, 36-40. https://doi.org/10.1016/j.rvsc.2017.03.001
Tanoh, E. A., Boué, G. B., Nea, F., Genva, M., Wognin, E. L., Ledoux, A., Martin, H., Tonzibo, Z. F., Frederich, M., & Fauconnier, M.-L. (2020). Seasonal effect on the chemical composition, insecticidal properties and other biological activities of Zanthoxylum leprieurii guill. & perr. essential oils. Foods, 9(5), 550. https://doi.org/10.3390%2Ffoods9050550
Thamer, F. H., & Thamer, N. (2023). Gas chromatography–Mass spectrometry (GC-MS) profiling reveals newly described bioactive compounds in Citrullus colocynthis (L.) seeds oil extracts. Heliyon, 9(6), e16861. https://doi.org/10.1016/j.heliyon.2023.e16861
Yan, T. K., Asari, A., Salleh, S. A., & Azmi, W. A. (2021). Eugenol and thymol derivatives as antifeedant agents against red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) larvae. Insects, 12(6), 551. https://doi.org/10.3390/insects12060551