Comparison of conventional and supercritical CO2 extraction techniques of Curcuma longa L. oleoresin and optimization of the spray drying process

Autores

DOI:

https://doi.org/10.5327/fst.00168

Palavras-chave:

bisdemethoxycurcumin, curcumin, demethoxycurcumin, green technology, microencapsulation, response surface

Resumo

Turmeric (Curcuma longa) is used as fresh turmeric and flour in Loreto, Peru. However, there are still no studies on the characterization and utilization of oleoresin as an input for the food industry. The objectives of this study were to compare conventional and supercritical CO2 extraction techniques of turmeric oleoresin and optimize the microencapsulation process through spray drying. Yield, curcuminoid content, total phenolic content (TPC), and antioxidant capacity (AC) of oleoresins obtained with supercritical CO2 and conventional extraction techniques were compared. Spray drying process parameters for microencapsulation of oleoresin were optimized. The highest extraction yield of oleoresin was obtained with ethanol and methanol. However, these extracts had low values of total curcuminoids of 25.81% and 29.31%, respectively. Oleoresins extracted with supercritical CO2 (SC-CO2), ethanol, and acetone showed high contents of TPC with 0.2697, 0.2602, and 0.2560 g GAE/g oleoresin, respectively, while oleoresin extracted with SC-CO2 had the highest AC by ABTS (2491.96 µmol TE/g oleoresin). Optimum conditions of spray drying were obtained with 190°C and a feed flow of 3.3 mL/min. In conclusion, Curcuma longa oleoresin is a valuable nutritional source for potential use in the food industry.

Downloads

Não há dados estatísticos.

Referências

Altir, N. K. M., Ali, A. M. A., Gaafar, A.-R. Z., Qahtan, A. A., Abdel-Salam, E. M., Alshameri, A., Hodhod, M. S., & Almunqedhi, B. (2021). Phytochemical profile, in vitro antioxidant, and anti-protein denaturation activities of Curcuma longa L. rhizome and leaves. Open Chemistry, 19, 945-952. https://doi.org/10.1515/chem-2021-0086

Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives: A review. Journal of Traditional and Complementary Medicine, 7(2), 205-233. https://doi.org/10.1016/j.jtcme.2016.05.005

Ameri, M., & Maa, Y.-F. (2006). Spray Drying of Biopharmaceuticals: Stability and Process Considerations. Drying Technology, 24(6), 763-768. https://doi.org/10.1080/03602550600685275

Aniesrani Delfiya, D. S., Thangavel, K., Natarajan, N., Kasthuri, R., & Kailappan, R. (2015). Microencapsulation of turmeric oleoresin by spray drying and in vitro release studies of microcapsules. Journal of Food Process Engineering, 38(1), 37-48. https://doi.org/10.1111/jfpe.12124

Ashraf, K., Mujeeb, M., Ahmad, A., Ahmad, N., & Amir, M. (2015). Determination of Curcuminoids in Curcuma longa Linn. By UPLC/Q-TOF-MS: An Application in Turmeric Cultivation. Journal of Chromatography Science, 53(8), 1346-1352. https://doi.org/10.1093/chromsci/bmv023

Bagchi, A. (2012). Extraction of Curcumin. IOSR Journal of Environmental Science, Toxicology and Food Technology, 1(3), 1-16.

Barriga-Sánchez, M., Hiparraguirre, H. C., & Rosales-Hartshorn, M. (2022). Chemical composition and mineral content of Black Borgoña (Vitis labrusca L.) grapes, pomace and seeds, and effects of conventional and non-conventional extraction methods on their antioxidant properties. Food Science and Technology, 42, e120021. https://doi.org/10.1590/fst.120021

Barzegar, A. (2012). The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chemistry, 135(3), 1369-1376. https://doi.org/10.1016/j.foodchem.2012.05.070

Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “‘Antioxidant Power’”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

Binello, A., Grillo, G., Barge, A., Allegrini, P., Ciceri, D., & Cravotto, G. (2020). A Cross-Flow Ultrasound-Assisted Extraction of Curcuminoids from Curcuma longa L.: Process Design to Avoid Degradation. Foods, 9(6), 743. https://doi.org/10.3390/foods9060743

Böttcher, S., Steinhäuser, U., & Drusch, S. (2015). Off-flavour masking of secondary lipid oxidation products by pea dextrin. Food Chemistry, 169, 492-498. https://doi.org/10.1016/j.foodchem.2014.05.006

Cano-Higuita, D. M., Vélez, H. A. V., & Telis, V. R. N. (2015). Microencapsulation of turmeric oleoresin in binary and ternary blends of gum Arabic, maltodextrin and modified starch. Ciência e Agrotecnologia, 39(2), 173-182. https://doi.org/10.1590/S1413-70542015000300012

Cao, Y., Xu, R. X., & Liu, Z. (2014). A high-throughput quantification method of curcuminoids and curcumin metabolites in human plasma via high-performance liquid chromatography/tandem mass spectrometry. Journal of Chromatography B, 949-950, 70-78. https://doi.org/10.1016/j.jchromb.2013.12.039

Chassagnez-Méndez, A. L., Machado, N. T., Araujo, M. E., Maia, J. G., & Meireles, M. A. (2000). Supercritical CO2 extraction of curcumins and essential oil from the rhizomes of turmeric (Curcuma longa L.). Industrial & Engineering Chemistry Research, 39(12), 4729-4733. https://doi.org/10.1021/ie000171c

Chempakam, B., & Parthasarathy, V. A. (2008). Turmeric. In V. A. Parthasarathy, B. Chempakam, & T. J. Zachariah (eds.). Chemistry of spices (pp. 97-123). CABI Publishing.

Chen, X. D., & Özkan, N. (2007). Stickiness, Functionality, and Microstructure of Food Powders. Drying Technology, 25(6), 959-969. https://doi.org/10.1080/07373930701397400

Elanthendral, G., Shobana, N., Meena, R., Prakash, P., & Samrot, A. V. (2021). Utilizing pharmacological properties of polyphenolic curcumin in nanotechnology. Biocatalysis and Agricultural Biotechnology, 38, 102212. https://doi.org/10.1016/j.bcab.2021.102212

Ferreira, S., Malacrida, C. R., & Nicoletti, V. R. (2019). Influence of emulsification methods and spray drying parameters on the microencapsulation of turmeric oleoresin. Emirates Journal of Food and Agriculture, 31(7), 491-500. https://doi.org/10.9755/ejfa.2019.v31.i7.1968

Fırtın, B., Yenipazar, H., Saygün, A., & Şahin-Yeşilçubuk, N. (2020). Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. LWT, 134, 109947. https://doi.org/10.1016/j.lwt.2020.109947

Food and Agriculture Organization of the United Nations (1986). Compositional analysis methods. In P. G. Martind (ed.). Manual of food quality control (p. 202-236). Food and Agriculture Organization of the United Nations.

Green, C. E., Hibbert, S. L., Bailey-Shaw, Y. A., Williams, L. A. D., Michell, S., & Garraway, E. (2008). Extraction, processing, and storage effects on curcuminoids and oleoresin yields from Curcuma longa L. grown in Jamaica. Journal of Agriculture and Food Chemistry, 56(10), 3664-3670. https://doi.org/10.1021/jf073105v

Guo, J., Li, P., Kong, L., Xu, B. (2020). Microencapsulation of curcumin by spray drying and freeze drying. LWT, 132, 109892. https://doi.org/10.1016/j.lwt.2020.109892

Haiyee, Z. A., Saim, N., Said, M., Illias, R. M., Mustapha, W. A. W., & Hassan, O. (2009). Characterization of cyclodextrin complexes with turmeric oleoresin. Food Chemistry, 114(2), 459-465. https://doi.org/10.1016/j.foodchem.2008.09.072

Honary, S., & Zahir, F. (2013). Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 1). Tropical Journal of Pharmaceutical Research, 12, 255-264. https://doi.org/10.4314/tjpr.v12i2.19

Ipar, V. S., Singhal, R. S., & Devarajan, P. V. (2022). An innovative approach using microencapsulated turmeric oleoresin to develop ready-to-use turmeric milk powder with enhanced oral bioavailability. Food Chemistry, 373(Part A), 131400. https://doi.org/10.1016/j.foodchem.2021.131400

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology, 26(7), 816-835. https://doi.org/10.1080/07373930802135972

Jude, S., Amalraj, A., Kunnumakkara, A. B., Divya, C., Löffler, B.-M., Gopi, S. (2018). Development of Validated Methods and Quantification of Curcuminoids and Curcumin Metabolites and Their Pharmacokinetic Study of Oral Administration of Complete Natural Turmeric Formulation (CureitTM) in Human Plasma via UPLC/ESI-Q-TOF-MS Spectrometry. Molecules, 23(10), 2415. https://doi.org/10.3390/molecules23102415

Laokuldilok, N., Thakeow, P., Kopermsub, P., & Utama-ang, N. (2016). Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chemistry, 194, 695-704. https://doi.org/10.1016/j.foodchem.2015.07.150

Lucas, J., Ralaivao, M., Estevinho, B. N., Rocha, F. (2020). A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technology, 362, 428-435. https://doi.org/10.1016/j.powtec.2019.11.095

Maggi, F. (2022). Antioxidants effects in health. The bright and the dark side. In S. M. Nabavi, & A. S. S. Silva (eds.). Turmeric (pp. 448-460). Elsevier.

Munekata, P. E. S., Pateiro, M., Zhang, W., Dominguez, R., Xing, L., Movilla, E., & Lorenzo, J. M. (2021). Health benefits, extraction and development of functional foods with curcuminoids. Journal of Functional Foods, 79, 104392. https://doi.org/10.1016/j.jff.2021.104392

Nagavekar, N., & Singhal, R. S. (2019). Supercritical fluid extraction of Curcuma longa and Curcuma amada oleoresin: Optimization of extraction conditions, extract profiling, and comparison of bioactivities. Industrial Crops and Products, 134, 134-145. https://doi.org/10.1016/j.indcrop.2019.03.061

Nampoothiri, S. V., Lekshmi, P. C., Venugopalan, V. V., & Menon, A. N. (2012). Antidiabetic and antioxidant potentials of spent turmeric oleoresin, a by-product from curcumin production industry. Asian Pacific Journal of Tropical Disease, 2(Suppl. 1), S169-S172. https://doi.org/10.1016/S2222-1808(12)60146-7

Omosa, L. K., Midiwo, J. O., & Kuete, V. (2017). Curcuma longa. Medicinal Spices and Vegetables from Africa, 425-435. https://doi.org/10.1016/B978-0-12-809286-6.00019-4

Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57, 4299-4315. https://doi.org/10.1007/s13197-020-04433-2

Pothitirat, W., & Gritsanapan, W. (2005). Quantitative Analysis of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin in the Crude Curcuminoid Extract from Curcuma longa in Thailand by TLC- Densitometry. Mahidol University Journal of Pharmaceutical Sciences, 32, 23-30.

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agriculture and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698

Revathy, S., Elumalai, S., Merina, B., & Antony, B. (2011). Isolation, Purification and Identification of Curcuminoids from Turmeric (Curcuma longa L.) by Column Chromatography. Journal of Experimental Science, 2(7), 21-25.

Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). (2022). Datos Hidrometeorológicos a nivel nacional. SENAMHI. Retrieved from https://www.senamhi.gob.pe/?p=estaciones

Sheu, S.-C., Wu, Y.-C., Lien, Y.-Y., & Lee, M.-S. (2021). Specific, sensitive and rapid Curcuma longa turmeric powder authentication in commercial food using loop-mediated isothermal nucleic acid amplification. Saudi Journal of Biological Sciences, 28(10), 5931-5936. https://doi.org/10.1016/j.sjbs.2021.06.057

Sheu, T.-Y., & Rosenberg, M. (1998). Microstructure of microcapsules consisting of whey proteins and carbohydrates. Journal of Food Science, 63(3), 491-494. https://doi.org/10.1111/j.1365-2621.1998.tb15770.x

Sierra y Selva Exportadora (2020). Oportunidades Comerciales - Jengibre y Cúrcuma. Sierra y Selva Exportadora. Retrieved from https://www.gob.pe/institucion/sse/informes-publicaciones/1368938-oportunidades-comerciales-jengibre-y-curcuma-2020

Singh, G., Kapoor, I. P. S., Singh, P., Heluani, C., De Lampasona, M. P., & Catalan, C. (2010). Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food and Chemical Toxicology, 48(4), 1026-1031. https://doi.org/10.1016/j.fct.2010.01.015

Singh, R., & Sharma, P. (2011). Hepatoprotective effect of curcumin on lindane-induced oxidative stress in male Wistar rats. Toxicology International, 18, 124-129. https://doi.org/10.4103/0971-6580.84264

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In L. Packer (ed.). Methods in enzymology (pp. 152-178). Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1

Taguchi, Y., Saito, N., Uchida, A., & Tanaka, M. (2016). Preparation of Thermosensitive microcapsules containing water soluble powder by melting dispersion cooling method. Journal of Encapsulation and Adsorption Science, 6(3), 57-69. https://doi.org/10.4236/jeas.2016.63006

Verma, S. C., & Jain, C. L. (2011). Solvent polarity based microwave-assisted extraction of curcuminoids from curcuma longa L. Rhizome and their quantitative determination by HPLC-PDA Method. International Journal of Pharmaceutical Research, 3(4), 41-47.

Widmann, A.-K., Wahl, M. A., Kammerer, D. R., & Daniels, R. (2022). Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction. Pharmaceutics, 14(9), 1943. https://doi.org/10.3390/pharmaceutics14091943

Woodhead, J. L., & Hall, C. K. (2011). Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles. Macromolecules, 44(13), 5443-5451. https://doi.org/10.1021/ma102938g

Zamarioli, C. M., Martins, R. M., Carvalho, E. C., & Freitas, L. A. P. (2015). Nanoparticles containing curcuminoids (Curcuma longa): development of topical delivery formulation. Revista Brasileira de Farmacognosia, 25(1), 53-60. https://doi.org/10.1016/j.bjp.2014.11.010

Zhou, L., Zhang, J., Xing, L., & Zhang, W. (2021). Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends in Food Science and Technology, 110, 493-512. https://doi.org/10.1016/j.tifs.2021.02.008

Zuanon, L. A. C., Malacrida, C. R., & Telis, V. R. N. (2016). Effect of ultrasound on the stability of turmeric oleoresin microencapsulated in gelatin‐collagen matrices. Journal of Food Process Engineering, 40(2), e12360. https://doi.org/10.1111/jfpe.12360

Downloads

Publicado

2024-02-09

Como Citar

BARRIGA-SÁNCHEZ, M., SANCHEZ-GONZALES, G., CUEVA-MARTÍNEZ, M., MEDINA-CÁCERES, E. A., & VILLACRES-VALLEJO, J. (2024). Comparison of conventional and supercritical CO2 extraction techniques of Curcuma longa L. oleoresin and optimization of the spray drying process. Food Science and Technology, 44. https://doi.org/10.5327/fst.00168

Edição

Seção

Artigos Originais