Extraction of glucomannan from porang (Amorphophallus muelleri Blume) with freeze-thaw cycles pre-treatment

Authors

  • Enny SHOLICHAH Universitas Gadjah Mada, Faculty of Mathematics and Natural Science, Department of Chemistry, Sekip Utara, Jl, Bulaksumur, Yogyakarta https://orcid.org/0000-0002-9902-7873
  • Bambang PURWONO Universitas Gadjah Mada, Faculty of Mathematics and Natural Science, Department of Chemistry, Sekip Utara, Jl, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0001-6284-7782
  • Agnes MURDIATI Universitas Gadjah Mada, Faculty of Agriculture Technology, Department of Food and Agriculture Product Technology, Jl, Flora No.1, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0001-5664-7792
  • Akhmad SYOUFIAN Universitas Gadjah Mada, Faculty of Mathematics and Natural Science, Department of Chemistry, Sekip Utara, Jl, Bulaksumur, Yogyakarta, Indonesia. https://orcid.org/0000-0002-2615-9437
  • Achmat SARIFUDIN Republic of Indonesia, National Research and Innovation Agency, Research Center for Appropriate Technology, Jl, KS, Tubun No. 5 Subang, West Java, Indonesia. https://orcid.org/0000-0002-9964-517X

DOI:

https://doi.org/10.5327/fst.1423

Keywords:

glucomannan, extraction, freeze-thaw cycles pre-treatments, porang, physicochemical-morphological properties

Abstract

Amorphophallus muelleri Blume tuber, which is called porang in Indonesia, is one of the biggest glucomannan sources next to the konjac tuber. Glucomannan is commonly produced by ethanol extraction technique. This study aimed to propose the freeze-thaw cycles (FTC) pre-treatments with two factors including freezing time and the number of cycles before the glucomannan extraction step and investigated the impact on the physicochemical and morphological properties of the extracted glucomannan. The obtained data were statistically tested by means of multivariate analysis of variance (MANOVA) and post-hoc Duncan tests at a significance level (P) of 0.05. The treated samples were statistically compared with the control sample (without FTC) by means of the Dunnett’s test. The result showed that FTC pre-treatments changed the morphology of glucomannan from smooth to become porous globes showing more fissures on its surface. Generally, the freezing time treatments affected the physicochemical properties of glucomannan except for its protein and calcium oxalate contents. The number of cycles did not significantly affect the protein, starch, and calcium oxalate contents. The Dunnett’s test results indicated that the ash, carbohydrate (glucomannan), and color of the glucomannan obtained by the FTC pre-treatments were significantly different from those of the control sample.

Downloads

Download data is not yet available.

References

Abedi, E., Sayadi, M., & Pourmohammadi, K. (2022). Food Hydrocolloids Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α -amylase : Investigation of functional properties. Food Hydrocolloids, 129, 107676. https://doi.org/10.1016/j.foodhyd.2022.107676

Anwar, M., McConnell, M., & Bekhit, A. E. D. (2021). New freeze-thaw method for improved extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta): Optimization and comprehensive characterization of physico-chemical and structural properties. Food Chemistry, 349, 129210. https://doi.org/10.1016/j.foodchem.2021.129210

Chairiyah, N., Harijati, N., & Mastuti, R. (2016). Variation of Calcium Oxalate (CaOx) Crystals in Porang Corms (Amorphophallus muelleri Blume) at Different Harvest Time. American Journal of Plant Sciences, 7(2), 306-315. https://doi.org/10.4236/ajps.2016.72030

Charoenrein, S., & Owcharoen, K. (2016). Effect of freezing rates and freeze-thaw cycles on the texture, microstructure and pectic substances of mango. International Food Research Journal, 23(2), 613-620.

Chua, M., Chan, K., Hocking, T. J., Williams, P. A., Perry, C. J., & Baldwin, T. C. (2012). Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydrate Polymers, 87(3), 2202-2210. https://doi.org/10.1016/j.carbpol.2011.10.053

Chua, M., Hocking, T. J., Chan, K., & Baldwin, T. C. (2013). Temporal and spatial regulation of glucomannan deposition and mobilization in corms of a morphophallus konjac (Araceae). American Journal of Botany, 100(2), 337-345. https://doi.org/10.3732/ajb.1200547

Dwiyono, K., & Djauhari, M. A. (2019). Indonesian Konjac: Its Benefit in Industry and Food Security.

Faridah, A., & Widjanarko, S. B. (2013). Optimization of Multilevel Ethanol Leaching Process of Porang Flour (Amorphophallus muelleri) Using Response Surface Methodology. International Journal on Advanced Science, Engineering and Information Technology, 3(2), 172-178. https://doi.org/10.18517/ijaseit.3.2.309

Faridah, A., Widjanarko, S. B., & Sutrisno, A. (2012). Optimization of Increasing Glucomannan Levels and Decreasing Calcium Oxalate in the Flourishing Process of Porang Chips (Amorphophallus oncophyllus) with the Mechanical Method. In National Seminar of PATPI 2011, Manado.

Felix da Silva, D., Ogawa, C. Y. L., Sato, F., Neto, A. M., Larsen, F. H., & Matumoto-Pintro, P. T. (2020). Chemical and physical characterization of Konjac glucomannan-based powders by FTIR and 13C MAS NMR. Powder Technology, 361, 610-616. https://doi.org/10.1016/j.powtec.2019.11.071

Feng, X., Dai, H., Ma, L., Fu, Y., Yu, Y., Zhu, H., Wang, H., Sun, Y., Tan, H., & Zhang, Y. (2021). Effect of freezing temperature on molecular structure and functional properties of gelatin extracted by microwave-freezing-thawing coupling method. Food Science and Technology, 149, 111894. https://doi.org/10.1016/j.lwt.2021.111894

Feng, X., Liu, T., Ma, L., Dai, H., Fu, Y., Yu, Y., Zhu, H., Wang, H., Tan, H., & Zhang, Y. (2022). A green extraction method for gelatin and its molecular mechanism. Food Hydrocolloids, 124(Part B), 107344. https://doi.org/10.1016/j.foodhyd.2021.107344

Food and Agriculture Organization (FAO). (1996). Konjac flour (v. 4, Issue 1996). Retrieved from http://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/Monograph1/additive-245-m1.pdf

Jiang, M., Li, H., Shi, J.-S., & Xu, Z.-H. (2018). Depolymerized konjac glucomannan: preparation and application in health care. Journal of Zhejiang University: Science B, 19(7), 505-514. https://doi.org/10.1631/jzus.B1700310

Kurt, A., & Kahyaoglu, T. (2017). Purification of glucomannan from salep: Part 2. Structural characterization. Carbohydrate Polymers, 169, 406-416. https://doi.org/10.1016/j.carbpol.2017.04.052

Li, J., Liu, Z., Feng, C., Liu, X., Qin, F., Liang, C., Bian, H., Qin, C., & Yao, S. (2021). Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresource Technology, 333, 125107. https://doi.org/10.1016/j.biortech.2021.125107

Liu, M., Ma, H., Liang, Y., Sun, L., Li, J., Dang, W., Li, L., & Zheng, X. (2022). Effect of multiple freezing / thawing cycles on the physicochemical properties and structural characteristics of starch from wheat flours with different gluten strength. International Journal of Biological Macromolecules, 194, 619-625. https://doi.org/10.1016/j.ijbiomac.2021.11.105

Liu, Y., Gao, J., Wu, H., Gou, M., Jing, L., Zhao, K., Zhang, B., Zhang, G., & Li, W. (2019). Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures. International Journal of Biological Macromolecules, 133, 346-353. https://doi.org/10.1016/j.ijbiomac.2019.04.111

Ma, S., Zhu, P., Wang, M., Wang, F., & Wang, N. (2019). Effect of konjac glucomannan with different molecular weights on physicochemical properties of corn starch. Food Hydrocolloids, 96, 663-670. https://doi.org/10.1016/j.foodhyd.2019.06.014

Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Frutos, M. J., Galtier, P., Gott, D., Gundert‐Remy, U., Lambré, C., Leblanc, J., Lindtner, O., Moldeus, P., Mosesso, P., Oskarsson, A., Parent‐Massin, D., Stankovic, I., Waalkens‐Berendsen, I., Woutersen, R. A., Wright, M., Dusemund, B. (2017). Re‐evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. EFSA Journal, 15(6), e04864. https://doi.org/10.2903/j.efsa.2017.4864

National Standardization Agency (1992). SNI 01-2891-1992: Testing methods of food and beverage. National Standardization Agency.

Noonan, S. C. (1999). Oxalate content of foods and its effect on humans. Asia Pacific Journal of Clinical Nutrition, 8(1), 64-74. https://doi.org/10.1046/j.1440-6047.1999.00038.x

Nurlela, N., Andriani, D., & Arizal, R. (2020). Extraction of Glucomannan from porang (Amorphophallus muelleri Blume) flour using Ethanol. Jurnal Sains Dan Terapan KImia, 14(2), 88-98. https://doi.org/10.20527/jstk.v14i2.8330

Nurlela, N., Ariesta, N., Santosa, E., & Muhandri, T. (2019). Effect of harvest timing and length of storage time on glucomannan content in porang tubers. IOP Conference Series: Earth and Environmental Science, 299(1), 1-8. https://doi.org/10.1088/1755-1315/299/1/012012

Peiying, L., (2003). Konjac. China Agriculture Press, 298 p.

Peiying, L., Shenglin, Z., Guohua, Z., Yan, C., Huaxue, O., Mei, H., Zhongfeng, W., Wei, X., Hongy, P., Zhang Shenglin, Z., Guohua, C. Y., Huaxue, O., Mei, H., & Zhongfeng, W. (2002). Professional Standard of the People’s Republic of China for Konjac flour.

Phothiset, S., & Charoenrein, S. (2014). Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. Journal of the Science of Food and Agriculture, 94(2), 189-196. https://doi.org/10.1002/jsfa.6226

Reshu, M. S., Chagam, R., Reddy, K., & Haripriya, S. (2017). Functional and physicochemical characteristics of cookies prepared from Amorphophallus paeoniifolius flour. Journal of Food Science and Technology, 54(7), 2156-2165. https://doi.org/10.1007/s13197-017-2656-y

Shen, G., Zhang, L., Hu, T., Li, Z., Chen, A., Zhang, Z., Wu, H., Li, S., & Hou, X. (2020). Preparation of potato flour by freeze-thaw pretreatment: Effect of different thawing methods on hot-air drying process and physicochemical properties. Food Science and Technology, 133, 110157. https://doi.org/10.1016/j.lwt.2020.110157

Shenglin, Z., Purwadaria, H. K., Borompichaichartkul, C., & Tripetch, P. (2020). Konjac Industry in Major Producing Countries. In Z. Shenglin, H. K. Purwadaria, C. Borompichaichartkul & P. Tripetch (eds.), Konjac Glucomannan (p. 223-254). Taylor & Francis Group. https://doi.org/10.4324/9780429429927-9

Shi, X.-D., Yin, J. Y., Cui, S. W., Wang, Q., Wang, S. Y., & Nie, S. P. (2020a). Comparative study on glucomannans with different structural characteristics : Functional properties and intestinal production of short chain fatty acids. International Journal of Biological Macromolecules, 164, 826-835. https://doi.org/10.1016/j.ijbiomac.2020.07.186

Shi, X.-D., Yin, J. Y., Cui, S. W., Wang, Q., Wang, S. Y., & Nie, S. P. (2020b). Plant-derived glucomannans: Sources, preparation methods, structural features, and biological properties. Trends in Food Science and Technology, 99, 101-116. https://doi.org/10.1016/j.tifs.2020.02.016

Sulaiman, I., Noviasari, S., Lubis, Y. M., Rozali, Z. F., Eriani, K., & Asriza, C. W. (2020). Analysis types and functions of microbes and duration of fermentation in the process of reducing levels of concentration oxalate levels in taro Kimpul. Systematic Reviews in Pharmacy, 11(11), 1450-1456. https://doi.org/10.31838/srp.2020.11.205

Tao, H., Huang, J. S., Xie, Q. T., Zou, Y. M., Wang, H. L., Wu, X. Y., & Xu, X. M. (2018). Effect of multiple freezing-thawing cycles on structural and functional properties of starch granules isolated from soft and hard wheat. Food Chemistry, 265, 18-22. https://doi.org/10.1016/j.foodchem.2018.05.065

Tao, H., Yan, J., Zhao, J., Tian, Y., Jin, Z., & Xu, X. (2015). Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch. PLoS One, 10(5), e0127138. https://doi.org/10.1371/journal.pone.0127138

Tu, J., Zhang, M., Xu, B., & Liu, H. (2015). Effects of different freezing methods on the quality and microstructure of lotus (Nelumbo nucifera) root. International Journal of Refrigeration, 52, 59-65. https://doi.org/10.1016/j.ijrefrig.2014.12.015

van der Sman, R. G. M. (2020). Impact of Processing Factors on Quality of Frozen Vegetables and Fruits. Food Engineering Reviews, 12(4), 399-420. https://doi.org/10.1007/s12393-020-09216-1

Wardhani, D. H., Nugroho, F., & Muslihuddin, M. (2015). Extraction of glucomannan of porang tuber (Amorphophallus onchophillus) by using IPA. AIP Conference Proceedings, 1699, 060007. https://doi.org/10.1063/1.4938361

Widjanarko, S. B., Widyastuti, E., & Rozaq, F. I. (2015). The effect of porang (Amorphophallus muelleri blume) milling time using ball mill (cyclone separator) method toward physical and chemical properties of porang flour. Jurnal Pangan Dan Agroindustri, 3(3), 867-877.

Xu, K., Chi, C., She, Z., Liu, X., Zhang, Y., Wang, H., & Zhang, H. (2022). Understanding how starch constituent in frozen dough following freezing-thawing treatment affected quality of steamed bread. Food Chemistry, 366, 130614. https://doi.org/10.1016/j.foodchem.2021.130614

Yang, Y., Zheng, S., Li, Z., Pan, Z., Huang, Z., Zhao, J., & Ai, Z. (2021). Influence of three types of freezing methods on physicochemical properties and digestibility of starch in frozen unfermented dough. Food Hydrocolloids, 115, 106619. https://doi.org/10.1016/j.foodhyd.2021.106619

Yanuriati, A., & Basir, D. (2020). (Amorphophallus muelleri blume) glucomannan solubility increase by wet dan dry milling. AgriTECH, 40(3), 223-231. https://doi.org/10.22146/agritech.43684

Yanuriati, A., Marseno, D. W., Rochmadi, & Harmayani, E. (2017). Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydrate Polymers, 156, 56-63. https://doi.org/10.1016/j.carbpol.2016.08.080

Yao-ling, L., Rong-hua, D., Ni, C., Juan, P., & Jie, P. (2013). Review of Konjac Glucomannan: Isolation, Structure, Chain Conformation and Bioactivities. Journal of Single Molecule Research, 1(1), 7-14. https://doi.org/10.12966/jsmr.07.03.2013

Yu, H., Mei, J., & Xie, J. (2022). New ultrasonic assisted technology of freezing, cooling and thawing in solid food processing: A review. Ultrasonics Sonochemistry, 90, 106185. https://doi.org/10.1016/j.ultsonch.2022.106185

Zhang, M., Li, F., Diao, X., Kong, B., & Xia, X. (2017). Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles. Meat Science, 133, 10-18. https://doi.org/10.1016/j.meatsci.2017.05.019

Zhao, J., Zhang, D., Srzednicki, G., Kanlayanarat, S., & Borompichaichartkul, C. (2010). Development of a low-cost two-stage technique for production of low-sulphur purified konjac flour. International Food Research Journal, 17(4), 1113-1124.

Zhao, L., Li, L., Liu, G. Q., Chen, L., Liu, X., Zhu, J., & Li, B. (2013). Effect of freeze-thaw cycles on the molecular weight and size distribution of gluten. Food Research International, 53(1), 409-416. https://doi.org/10.1016/j.foodres.2013.04.013

Downloads

Published

2023-07-05

How to Cite

SHOLICHAH, E., PURWONO, B., MURDIATI, A., SYOUFIAN, A., & SARIFUDIN, A. (2023). Extraction of glucomannan from porang (Amorphophallus muelleri Blume) with freeze-thaw cycles pre-treatment . Food Science and Technology, 43. https://doi.org/10.5327/fst.1423

Issue

Section

Original Articles