Animal-derived proteins as stabilizers of Pickering emulsions: applications and challenges

Authors

DOI:

https://doi.org/10.5327/fst.501

Keywords:

Pickering emulsions, lactoferrin, protein of animal origin, casein, albumin

Abstract

Emulsions are precursors for formulating stable food products with high demand worldwide and efficient cosmetics that can provide the capability of delivering bioavailable active ingredients. The development of Pickering emulsions is crucial because they can eliminate the more prolonged need for chemical stabilizers, increasing the sustainability and stability of the formulation. Conventional emulsion formulations employ chemical surfactants to stabilize. Nevertheless, incorporating proteins as emulsion stabilizers improves stability and attractiveness. Therefore, a systematic reference review is essential to give theoretical knowledge of Pickering emulsions and their structures and properties to review critical aspects, the mechanisms, and the vital applications to promote their stability. The subject of this review article is research focused on developing new protein modification technologies, improving their properties, and extending their applications. The applications of casein, whey protein, and egg albumin as emulsion stabilizers primarily focus on widely published literature. The present study focuses on evaluating the food industrial applications of casein, whey protein, egg albumin, lactoferrin, and myofibrils. The bioavailability of casein, whey protein, and egg albumin is essential for applying in Pickering emulsion, and it can be a limiting factor. We are opening new opportunities and options for utilizing alternative proteins, such as emulsion stabilizers.

Downloads

Download data is not yet available.

References

Atkins, P. (2024). Concepts in Physical Chemistry (2nd ed.). Royal Society of Chemistry. https://doi.org/10.1039/9781837674244

Badar, I. H., Wang, Z., Zhou, Y., Jaspal, M. H., Liu, H., Chen, Q., & Kong, B. (2024). Influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions on the rheological and physicochemical properties of myofibrillar protein gels. Food Chemistry, 456, Article 139970. https://doi.org/10.1016/j.foodchem.2024.139970

Baig, U., Faizan, M., & Waheed, A. (2022). A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation. Advances in Colloid and Interface Science, 303, Article 102635. https://doi.org/10.1016/j.cis.2022.102635

Bu, N., Huang, L., Cao, G., Lin, H., Pang, J., Wang, L., & Mu, R. (2022). Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, Article 129553. https://doi.org/10.1016/j.colsurfa.2022.129553

Carvalho-Guimarães, F. B., Correa, K. L., Souza, T. P., Amado, J. R. R., Ribeiro-Costa, R. M., & Silva-Júnior, J. O. C. (2022). A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals, 15(11), Article 1413. https://doi.org/10.3390/ph15111413

Chen, H., Zhao, R., Hu, J., Wei, Z., Mcclements, D. J., Liu, S., Li, B., & Li, Y. (2020). One-step dynamic imine chemistry for preparation of chitosan-stabilized emulsions using a natural aldehyde: acid trigger mechanism and regulation and gastric delivery. Journal of Agricultural and Food Chemistry, 68(19), 5412–5425. https://doi.org/10.1021/acs.jafc.9b08301

Chen, J., Chen, X., Zhou, G., & Xu, X. (2022). Ultrasound: A reliable method for regulating food component interactions in protein-based food matrices. Trends in Food Science & Technology, 128, 316–330. https://doi.org/10.1016/j.tifs.2022.08.014

Chen, S., & Zhang, L.-M. (2019). Casein nanogels as effective stabilizers for Pickering high internal phase emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, Article 123662. https://doi.org/10.1016/j.colsurfa.2019.123662

Cheng, C., Wu, Z., Wang, Y., Chen, J., Zhong, Y., Liang, R., Peng, S., McClements, D. J., & Liu, W. (2021). Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum Arabic complexes. Food Hydrocolloids, 113, Article 106445. https://doi.org/10.1016/j.foodhyd.2020.106445

Chu, C. C., Chew, S. C., & Nyam, K. L. (2021). Recent advances in encapsulation technologies of kenaf (Hibiscus cannabinus) leaves and seeds for cosmeceutical application. Food and Bioproducts Processing, 127, 99–113. https://doi.org/10.1016/j.fbp.2021.02.009

Dala-Paula, B. M. (Ed.). (2021). Química & Bioquímica de Alimentos (1st ed.). Editora Universidade Federal de Alfernas.

Damodaran, S., & Parkin, K. L. (Eds.). (2017). Fennema’s Food Chemistry (5th ed.). CRC Press. https://doi.org/10.1201/9781315372914

David-Birman, T., Mackie, A., & Lesmes, U. (2013). Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids, 31(1), 33–41. https://doi.org/10.1016/j.foodhyd.2012.09.013

Ding, F., Hu, B., Lan, S., & Wang, H. (2020). Flexographic and screen printing of carboxymethyl chitosan based edible inks for food packaging applications. Food Packaging and Shelf Life, 26, Article 100559. https://doi.org/10.1016/j.fpsl.2020.100559

Ding, F., Long, S., Huang, X., Shi, J., Povey, M., & Zou, X. (2024). Emerging Pickering emulsion films for bio-based food packaging applications. Food Packaging and Shelf Life, 42, Article 101242. https://doi.org/10.1016/j.fpsl.2024.101242

Doost, A., Nasrabadi, M. N., Kassozi, V., Dewettinck, K., Stevens, C. V., & Van der Meeren, P. (2019). Pickering stabilization of thymol through green emulsification using soluble fraction of almond gum – Whey protein isolate nano-complexes. Food Hydrocolloids, 88, 218–227. https://doi.org/10.1016/j.foodhyd.2018.10.009

Du, Y., Niu, L., Song, X., Niu, J., Zhang, C., & Zhi, K. (2024). Dual-modified starch as particulate emulsifier for Pickering emulsion: Structure, safety properties, and application for encapsulating curcumin. International Journal of Biological Macromolecules, 266, Article 131206. https://doi.org/10.1016/j.ijbiomac.2024.131206

Elbers, N. A., van der Hoeven, J. E. S., Winter, D. A. M., Schneijdenberg, C. T. W. M., van der Linden, M. N., Filion, L., & van Blaaderen, A. (2016). Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids. Soft Matter, 12(35), 7265–7272. https://doi.org/10.1039/C6SM01294A

Fanfan, P. N., Mabon, N., Carletti, I., Claustriaux, J. J., Thonart, P., Lognay, G., Copin, A., & Barthélemy, J. P. (2005). New model for performance prediction in fixed-bed reactors based on the approach of the unused bed zone. Water Research, 39(16), 4004–4010. https://doi.org/10.1016/j.watres.2005.07.027

Feng, X., Sun, Y., Tan, H., Ma, L., Dai, H., & Zhang, Y. (2023). Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity. Food Chemistry, 413, Article 135653. https://doi.org/10.1016/j.foodchem.2023.135653

Gonzalez Ortiz, D., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M., & Miele, P. (2020). Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering, 6(4), 468–482. https://doi.org/10.1016/j.eng.2019.08.017

Guo, Y., Wu, C., Du, M., Lin, S., Xu, X., & Yu, P. (2021). In-situ dispersion of casein to form nanoparticles for Pickering high internal phase emulsions. LWT, 139, Article 110538. https://doi.org/10.1016/j.lwt.2020.110538

Hadi, N. A., Ashaari, A., Matos, M., & Rasdi, N. W. (2024). Exploring particle-based stabilisation of Pickering emulsions in food, aquaculture, and industrial applications. International Journal of Food Science and Technology, 59(10), 6834–6855. https://doi.org/10.1111/ijfs.17478

He, W., Tian, L., Fang, F., Chen, D., Federici, E., Pan, S., & Jones, O. G. (2021). Limited hydrolysis and conjugation of zein with chitosan oligosaccharide by enzymatic reaction to improve functional properties. Food Chemistry, 348, Article 129035. https://doi.org/10.1016/j.foodchem.2021.129035

Hosseini, S. N., Pirsa, S., & Farzi, J. (2021). Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polymer Testing, 97, Article 107182. https://doi.org/10.1016/j.polymertesting.2021.107182

Hu, Y., Wang, L., & McClements, D. J. (2024). Design, characterization and digestibility of β-carotene-loaded emulsion system stabilized by whey protein with chitosan and potato starch addition. Food Chemistry, 440, Article 138131. https://doi.org/10.1016/j.foodchem.2023.138131

Huang, J., Wang, Q., Li, T., Xia, N., & Xia, Q. (2018). Multilayer emulsions as a strategy for linseed oil and α-lipoic acid micro-encapsulation: study on preparation and in vitro characterization. Journal of the Science of Food and Agriculture, 98(9), 3513–3523. https://doi.org/10.1002/jsfa.8870

Huang, Z., Ni, Y., Yu, Q., Li, J., Fan, L., & Eskin, N. A. M. (2022). Deep learning in food science: An insight in evaluating Pickering emulsion properties by droplets classification and quantification via object detection algorithm. Advances in Colloid and Interface Science, 304, Article 102663. https://doi.org/10.1016/j.cis.2022.102663

Jiang, H., Sheng, Y., & Ngai, T. (2020). Pickering emulsions: Versatility of colloidal particles and recent applications. Current Opinion in Colloid and Interface Science, 49, 1–15. https://doi.org/10.1016/j.cocis.2020.04.010

Kaseem, M., & Ko, Y. G. (2021). A novel hybrid composite composed of albumin, WO3, and LDHs film for smart corrosion protection of Mg alloy. Composites Part B: Engineering, 204, Article 108490. https://doi.org/10.1016/j.compositesb.2020.108490

Kilara, A., & Vaghela, M. N. (2018). Whey proteins. In R. Y. Yada (Ed.), Proteins in Food Processing (2nd ed., pp. 93–126). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100722-8.00005-X

Koroleva, M., & Yurtov, E. (2020). Pickering emulsions stabilized with magnetite, gold, and silica nanoparticles: Mathematical modeling and experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601, Article 125001. https://doi.org/10.1016/j.colsurfa.2020.125001

Kuang, Y., Zhao, S., Liu, P., Liu, M., Wu, K., Liu, Y., Deng, P., Li, C., & Jiang, F. (2023). Schiff base type casein-konjac glucomannan conjugates with improved stability and emulsifying properties via mild covalent cross-linking. Food Hydrocolloids, 141, Article 108733. https://doi.org/10.1016/j.foodhyd.2023.108733

Li, K.-Y., Yu, W.-K., Xiao, J.-X., & Huang, G.-Q. (2023). Addition of gelatin increased the spray drying performance of the Pickering emulsion stabilized by the ovalbumin – gum Arabic electrostatic complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, Article 131640. https://doi.org/10.1016/j.colsurfa.2023.131640

Li, Q.-H., Li, S.-Y., Yu, W.-K., Xiao, J.-X., & Huang, G.-Q. (2023). Comparison of the 3D printability of high internal phase Pickering emulsions stabilized by protein – Polysaccharide complexes and process optimization. Journal of Food Engineering, 353, Article 111548. https://doi.org/10.1016/j.jfoodeng.2023.111548

Li, S., Zong, Z.-M., Liu, J., Liu, F.-J., Wei, X.-Y., Liu, G.-H., & Wang, S.-K. (2019). Changes in oxygen-functional moieties during sequential thermal dissolution and methanolysis of the extraction residue from Zhaotong lignite. Journal of Analytical and Applied Pyrolysis, 139, 40–47. https://doi.org/10.1016/j.jaap.2019.01.006

Li, W., Jiao, B., Li, S., Faisal, S., Shi, A., Fu, W., Chen, Y., & Wang, Q. (2022). Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Frontiers in Nutrition, 9, Article 864943. https://doi.org/10.3389/fnut.2022.864943

Li, W., Zhao, P., Han, L., Zhang, F., Liu, B., & Meng, X. (2024). Antibacterial mechanism of whey protein isolated-citral nanoparticles and stable synergistic antibacterial eugenol encapsulated Pickering emulsion for grapes preservation. Food Chemistry, 455, Article 139851. https://doi.org/10.1016/j.foodchem.2024.139851

Li, Z., Zhao, R., Hu, F., Zhang, Y., Dong, B., Lu, P., Song, Z., Wang, H., Zhang, F., Liu, W., Yu, D., & Li, H. (2024). Pickering emulsions stabilized by whey protein isolate/nicotinamide mononucleotide complex and their application in pH-responsive drug delivery. Industrial Crops and Products, 214, Article 118494. https://doi.org/10.1016/j.indcrop.2024.118494

Lin, D., Zhang, L., Li, R., Zheng, B., Rea, M. C., & Miao, S. (2019). Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream (Pagrosomus major). Food Hydrocolloids, 96, 537–545. https://doi.org/10.1016/j.foodhyd.2019.05.043

Liu, K., Li, Y., Zhong, X., Hou, Y., Fei, S., Chen, E., & Tan, M. (2024). Protection effect of lutein-loaded Pickering emulsion prepared via ultrasound-assisted Maillard reaction conjugates on dry age-related macular degeneration. Food and Function, 15(12), 6347–6358. https://doi.org/10.1039/d4fo00673a

Luo, T., & Wei, Z. (2023). Recent progress in food-grade double emulsions: Fabrication, stability, applications, and future trends. Food Frontiers, 4(4), 1622–1642. https://doi.org/10.1002/fft2.276

McCarthy, E. K., & O’Callaghan, T. F. (2024). Bovine lactoferrin and its potential use as a functional ingredient for tackling the global challenge of iron deficiency. Current Opinion in Food Science, 59, Article 101211. https://doi.org/10.1016/j.cofs.2024.101211

Mukherjee, S. (2020). Pickering emulsions stabilized by nanoparticles. In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W.-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-Based Formulations: Biomedical and Food Applications (pp. 365–380). Elsevier. https://doi.org/10.1016/B978-0-12-816897-4.00016-3

Nayik, G. A., Gull, A., Masoodi, L., Navaf, M., Sunooj, K. V., Ucak, İ., Afreen, M., Kaur, P., Rehal, J., Jagdale, Y. D., Ramniwas, S., Singh, R., & Mugabi, R. (2024). Milk proteins: chemistry, functionality and diverse industrial applications. Cogent Food and Agriculture, 10(1), Article 2377686. https://doi.org/10.1080/23311932.2024.2377686

Nhouchi, Z., Watuzola, R., & Pense-Lheritier, A. M. (2022). A review on octenyl succinic anhydride modified starch-based Pickering-emulsion: Instabilities and ingredients interactions. Journal of Texture Studies, 53(5), 581–600. https://doi.org/10.1111/jtxs.12663

Pourmohammadi, K., & Abedi, E. (2021). Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chemistry, 356, Article 129679. https://doi.org/10.1016/j.foodchem.2021.129679

Ran, R., Zheng, T., Tang, P., Xiong, Y., Yang, C., Gu, M., & Li, G. (2023). Antioxidant and antimicrobial collagen films incorporating Pickering emulsions of cinnamon essential oil for pork preservation. Food Chemistry, 420, Article 136108. https://doi.org/10.1016/j.foodchem.2023.136108

Sadiq, U., Gill, H., & Chandrapala, J. (2021). Casein micelles as an emerging delivery system for bioactive food components. Foods, 10(8), Article 1965. https://doi.org/10.3390/foods10081965

Sarkar, A., & Dickinson, E. (2020). Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Current Opinion in Colloid and Interface Science, 49, 69–81. https://doi.org/10.1016/j.cocis.2020.04.004

Shi, Y., Liang, R., Chen, L., Liu, H., Goff, H. D., Ma, J., & Zhong, F. (2019). The antioxidant mechanism of Maillard reaction products in oil-in-water emulsion system. Food Hydrocolloids, 87, 582–592. https://doi.org/10.1016/j.foodhyd.2018.08.039

Shimoni, G., Levi, C. S., Tal, S. L., & Lesmes, U. (2013). Emulsions stabilization by lactoferrin nano-particles under in vitro digestion conditions. Food Hydrocolloids, 33(2), 264–272. https://doi.org/10.1016/j.foodhyd.2013.03.017

Su, T., Zhang, E., Yang, Y., Zheng, T., Xin, T., Dong, L., Huang, F., & Su, D. (2023). Utilization of ovalbumin-ferulic acid-carrageenan Pickering emulsion in baked bread for butter reduction: Bread microstructural properties and quality. LWT, 185, Article 115124. https://doi.org/10.1016/j.lwt.2023.115124

Sun, Y., Ma, L., Fu, Y., Dai, H., & Zhang, Y. (2021). Fabrication and characterization of myofibrillar microgel particles as novel Pickering stabilizers: Effect of particle size and wettability on emulsifying capacity. LWT, 151, Article 112002. https://doi.org/10.1016/j.lwt.2021.112002

Tao, J., Zhu, L., Zhu, L., Lei, L., & Zhao, G. (2024). Colloidal lignin particle reinforces the stability of Pickering emulsions prepared with zein nanoparticle. Food Chemistry, 460(Part 1), Article 140581. https://doi.org/10.1016/j.foodchem.2024.140581

Tsai, C.-R., & Lin, Y.-K. (2022). Artificial steak: A 3D printable hydrogel composed of egg albumen, pea protein, gellan gum, sodium alginate and rice mill by-products. Future Foods, 5, Article 100121. https://doi.org/10.1016/j.fufo.2022.100121

Wang, H., Zhang, J., Liu, X., Wang, J., Li, X., & Li, J. (2024). Effect of sodium starch octenyl succinate-based Pickering emulsion on the physicochemical properties of hairtail myofibrillar protein gel subjected to multiple freeze-thaw cycles. Food Science and Human Wellness, 13(2), 1018–1028. https://doi.org/10.26599/FSHW.2022.9250088

Wang, J., Cui, Y., Shi, L., Yang, S., Qiu, X., Hao, G., Liu, Z., Liu, S., Chen, Y., Weng, W., & Ren, Z. (2023). Effect of ionic types on the characteristics of Pickering emulsions stabilized by myofibrillar proteins from hairtail (Trichiurus lepturus). LWT, 189, Article 115559. https://doi.org/10.1016/j.lwt.2023.115559

Wang, S., Liu, L., Bi, S., Zhou, Y., Liu, Y., Wan, J., Zeng, L., Zhu, Q., Pang, J., & Huang, X. (2023). Studies on stabilized mechanism of high internal phase Pickering emulsions from the collaboration of low dose konjac glucomannan and myofibrillar protein. Food Hydrocolloids, 143, Article 108862. https://doi.org/10.1016/j.foodhyd.2023.108862

Wang, T., Wang, S., Zhang, L., Sun, J., Guo, T., Yu, G., & Xia, X. (2023). Fabrication of bilayer emulsion by ultrasonic emulsification: Effects of chitosan on the interfacial stability of emulsion. Ultrasonics Sonochemistry, 93, Article 106296. https://doi.org/10.1016/j.ultsonch.2023.106296

Wang, X., Liao, Z., Zhao, G., Dong, W., Huang, X., Zhou, X., & Liang, X. (2023). Curcumin nanocrystals self-stabilized Pickering emulsion freeze-dried powder: Development, characterization, and suppression of airway inflammation. International Journal of Biological Macromolecules, 245, Article 125493. https://doi.org/10.1016/j.ijbiomac.2023.125493

Wang, Y., Jiang, Y., & Shi, J. (2024a). Fabrication of novel casein/oligochitosan nanocomplexes for lutein delivery: Enhanced stability, bioavailability, and antioxidant properties. Food Research International, 197(Part 1), Article 115241. https://doi.org/10.1016/j.foodres.2024.115241

Wang, Y., Jiang, Y., & Shi, J. (2024b). Novel Pickering emulsion stabilized by glycated casein embedding curcumin: Stability, bioaccessibility and antioxidant properties. LWT, 194, Article 115796. https://doi.org/10.1016/j.lwt.2024.115796

Wang, Y., Zhang, J., & Zhang, L. (2022). Study on the mechanism of non-covalent interaction between rose anthocyanin extracts and whey protein isolate under different pH conditions. Food Chemistry, 384, Article 132492. https://doi.org/10.1016/j.foodchem.2022.132492

Wen, A., Yuan, S., Wang, H., Mi, S., Yu, H., Guo, Y., Xie, Y., Qian, H., & Yao, W. (2024). Molecular insights on the binding of chlortetracycline to bovine casein and its effect on the thermostability of chlortetracycline. Food Chemistry, 432, Article 137104. https://doi.org/10.1016/j.foodchem.2023.137104

Wen, J., Jiang, L., & Sui, X. (2023). Plant protein and animal protein-based Pickering emulsion: A review of preparation and modification methods. Journal of the American Oil Chemists’ Society, 101(10), 1027–1042. https://doi.org/10.1002/aocs.12779

Wu, C., Chen, H., Zhang, T., Wang, W., Chen, L., Feng, X., Zhou, F., & Tang, X. (2025). Recent developments on the freeze-thaw stability of Pickering emulsions and its application as nutrient delivery vehicles. Food Hydrocolloids, 158, Article 110494. https://doi.org/10.1016/j.foodhyd.2024.110494

Xiong, Y. L. (2018). Muscle proteins. In R. Y. Yada (Ed.), Proteins in Food Processing (2nd ed., pp. 127–148). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100722-8.00006-1

Xu, Y., Chu, Y., Feng, X., Gao, C., Wu, D., Cheng, W., Meng, L., Zhang, Y., & Tang, X. (2020). Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. International Journal of Biological Macromolecules, 156, 111–119. https://doi.org/10.1016/j.ijbiomac.2020.04.027

Xu, Y.-T., Tang, C.-H., Liu, T.-X., & Liu, R. (2018). Ovalbumin as an Outstanding Pickering Nanostabilizer for High Internal Phase Emulsions. Journal of Agricultural and Food Chemistry, 66(33), 8795–8804. https://doi.org/10.1021/acs.jafc.8b02183

Yang, Z., Chen, B., Tahir, H. E., Li, Z., Huang, X., Li, M., Zhang, K., Li, B., Zhai, X., Shi, J., Zou, X., & Xiao, J. (2024). Gelatin/sodium alginate-based biodegradable films functionalized by persimmon pectin/ovalbumin-stabilized neem essential oil Pickering emulsion: Application for cherry tomato preservation. Progress in Organic Coatings, 192, Article 108448. https://doi.org/10.1016/j.porgcoat.2024.108448

Ye, Q., Chen, Z., Li, Y., Zheng, W., Wang, W., Shi, T., & Xiao, J. (2025). Dynamic adsorption and stability mechanisms in Pickering emulsions co-stabilized by whey protein microgel particles and sucrose esters. Food Hydrocolloids, 159, Article 110593. https://doi.org/10.1016/j.foodhyd.2024.110593

Yuliarti, O., Lau, Z. X., Wee, L., & Kwan, C. K. J. (2019). Enhancing the stability of oil-in-water emulsion using pectin-lactoferrin complexes. International Journal of Biological Macromolecules, 139, 421–430. https://doi.org/10.1016/j.ijbiomac.2019.07.210

Zhang, S., Li, X., Yan, X., McClements, D. J., Ma, C., Liu, X., & Liu, F. (2022). Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. Ultrasonics Sonochemistry, 89, Article 106110. https://doi.org/10.1016/j.ultsonch.2022.106110

Zhang, T., Seah, K.-W., & Ngai, T. (2023). Single and double Pickering emulsions stabilized by sodium caseinate: Effect of crosslinking density. Food Hydrocolloids, 139, Article 108483. https://doi.org/10.1016/j.foodhyd.2023.108483

Zhang, X., Liu, Z., & Shi, W. (2024). Pickering emulsion stabilized by grass carp myofibrillar protein via one-step: Study on microstructure, processing stability and stabilization mechanism. Food Chemistry, 447, Article 139014. https://doi.org/10.1016/j.foodchem.2024.139014

Zhao, J., Wei, T., Wei, Z., Yuan, F., & Gao, Y. (2015). Influence of soybean soluble polysaccharides and beet pectin on the physicochemical properties of lactoferrin-coated orange oil emulsion. Food Hydrocolloids, 44, 443–452. https://doi.org/10.1016/j.foodhyd.2014.10.025

Zhao, S., Wang, X., Zhang, H., Li, W., He, Y., Meng, X., & Liu, B. (2023). Bacteriostatic Pickering emulsions stabilized by whey protein isolate–vanillin nanoparticles: Fabrication, characterization and stability in vitro. Food Chemistry, 429, Article 136871. https://doi.org/10.1016/j.foodchem.2023.136871

Zhu, C., Tian, Y., Liu, H., Zhao, G., Ma, Y., Bai, X., & Wang, K. (2024). Having their cake and eat it too: Effects of different cations in reduced-salt myofibrillar protein microgel pickering emulsion under high-intensity ultrasound. LWT, 210, Article 116856. https://doi.org/10.1016/j.lwt.2024.116856

Zhu, Q., Qiu, Y., Zhang, L., Lu, W., Pan, Y., Liu, X., Li, Z., & Yang, H. (2024). Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Research International, 191, Article 114675. https://doi.org/10.1016/j.foodres.2024.114675

Downloads

Published

2025-09-10

How to Cite

Souza, A. C. A. de, Briceno, J. C. C., Pires de Amorin Trindade, D., Conceição, E. C. da, Oliveira, T. F. de, Gómez-Estaca, J., & Silva, F. (2025). Animal-derived proteins as stabilizers of Pickering emulsions: applications and challenges. Food Science and Technology, 45. https://doi.org/10.5327/fst.501

Issue

Section

Review Articles