Enhancing the extraction efficiency of beneficial compounds from Tapirira guianensis fruit using ultrasound-assisted extraction and choline chloride deep eutectic solvent
DOI:
https://doi.org/10.5327/fst.493Keywords:
Ultrasound, NADES, antioxidant compounds, eutectic solventsAbstract
In recent decades, a new class of solvents known as natural deep eutectic solvents has emerged. In this study, the efficacy of different natural deep eutectic solvents, prepared by ultrasound-assisted synthesis, was evaluated for extracting bioactive compounds from Tapirira guianensis fruits. A total of seven natural deep eutectic solvents systems, combining choline chloride with various hydrogen bond donors (carboxylic acids, alcohols, and sugars), were analyzed for total phenolic content and antioxidant activity. The results showed that carboxylic acid-based natural deep eutectic solvents were the most efficient, with the best results obtained using choline chloride/citric acid/glycerol (Stap7) > choline chloride/citric acid (Stap1) > choline chloride/lactic acid (Stap2), yielding total phenolic contents of 715.7 ± 1.1, 648.5 ± 1.2, and 630.7 ± 0.7 mg GAE/g, respectively. Ultrasonic extraction with 40% (v/v) eutectic mixtures showed that combinations with citric acid were more effective, producing extracts with high concentrations of polyphenols and antioxidant potential. The antioxidant activity, measured by 2,2-Diphenyl-1-picrylhydrazyl, 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and ferric-reducing antioxidant power assays, showed a similar trend. Spectroscopic analysis (nuclear magnetic resonance) identified gallic acid and 5-hydroxyvanillin, providing structural details of the extracts. Macro- and micronutrient analysis revealed some elements below detection limits. Therefore, these extracts can be used directly for application development without additional isolation.
Downloads
References
Agostini-Costa, T. S., Gomes, I. S., Melo, L. A. M. P., Reifschneider, F. J. B., & Ribeiro, C. S. C. (2017). Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. Journal of Food Composition and Analysis, 57, 73–79. https://doi.org/10.1016/j.jfca.2016.12.020
Airouyuwa, J. O., Mostafa, H., Ranasinghe, M., & Maqsood, S. (2023). Influence of physicochemical properties of carboxylic acid-based natural deep eutectic solvents (CA-NADES) on extraction and stability of bioactive compounds from date (Phoenix dactylifera L.) seeds: An innovative and sustainable extraction technique. Journal of Molecular Liquids, 388, Article 122767. https://doi.org/10.1016/j.molliq.2023.122767
Andrade, J. K., S. Barros, R. G. C., Gualberto, N. C., Oliveira, C. S., Shanmugam, S., & Narain, N. (2022). Influence of in vitro gastrointestinal digestion and probiotic fermentation on the bioaccessibility of gallic acid and on the antioxidant potential of Brazilian fruit residues. LWT, 153, Article 112436. https://doi.org/10.1016/j.lwt.2021.112436
Bakirtzi, C., Triantafyllidou, K., & Makris, D. P. (2016). Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 120–127. https://doi.org/10.1016/j.jarmap.2016.03.003
Barbieri, J. B., Goltz, C., Cavalheiro, F. B., Toci, A. T., Igarashi-Mafra, L., & Mafra, M. R. (2020). Deep Eutectic solvents applied in the extraction and stabilization of rosemary (rosmarinus officinalis l.) phenolic compounds. Industrial Crops and Products, 144, Article 112049. https://doi.org/10.1016/j.indcrop.2019.112049
Bezerra, M. A., Ferreira, S. L. C., Novaes, C. G., Santos, A. M. P., Valasques, G. S., Cerqueira, U. M. F. M., & Alves, J. P. S. (2019). Simultaneous optimization of multiple responses and its application in Analytical Chemistry – A review. Talanta, 194, 941–959. https://doi.org/10.1016/j.talanta.2018.10.088
Durante, C., Cocchi, M., Lancellotti, L., Maletti, L., Marchetti, A., Roncaglia, F., Sighinolfi, S., & Tassi, L. (2021). Analytical concentrations of some elements in seeds and crude extracts from Aesculus hippocastanum, by icp-oes technique. Agronomy, 11(1), Article 47. https://doi.org/10.3390/agronomy11010047
Espino, M., Ángeles Fernández, M., Gomez, F. J. V., & Silva, M. F. (2016). Natural designer solvents for greening analytical chemistry. TrAC Trends in Analytical Chemistry, 76, 126–136. https://doi.org/10.1016/j.trac.2015.11.006
Ferreira, L. F., Minuzzi, N. M., Rodrigues, R. F., Pauletto, R., Rodrigues, E., Emanuelli, T., & Bochi, V. C. (2020). Citric acid water-based solution for blueberry bagasse anthocyanins recovery: Optimization and comparisons with microwave-assisted extraction (MAE). LWT, 133, Article 110064. https://doi.org/10.1016/j.lwt.2020.110064
Fiorentini, E. F., Llaver, M., Oviedo, M. N., Quintas, P. Y., & Wuilloud, R. G. (2022). State-of-the-art analytical methods based on ionic liquids for food and beverage analysis. Green Analytical Chemistry, 1, Article 100002. https://doi.org/10.1016/j.greeac.2022.100002
Fuad, F. M., & Nadzir, M. M. (2021). Hydrophilic natural deep eutectic solvent : A review on physicochemical properties and extractability of bioactive compounds. Journal of Molecular Liquids, 339, Article 116923. https://doi.org/10.1016/j.molliq.2021.116923
Gamela, R. R., Barrera, E. G., Duarte, Á. T., Boschetti, W., Silva, M. M., Vale, M. G. R., & Dessuy, M. B. (2019). Fast sequential determination of zn, fe, mg, ca, na, and k in infant formulas by high-resolution continuum source flame atomic absorption spectrometry using ultrasound-assisted extraction. Food Analytical Methods, 12(6), 1420–1428. https://doi.org/10.1007/s12161-019-01478-8
Gamela, R. R., Costa, V. C., & Pereira-Filho, E. R. (2020). Multivariate optimization of ultrasound-assisted extraction procedure for the determination of Ca, Fe, K, Mg, Mn, P, and Zn in Pepper samples by ICP OES. Food Analytical Methods, 13(1), 69–77. https://doi.org/10.1007/s12161-019-01524-5
Hayyan, M., Abo-Hamad, A., AlSaadi, M. A., & Hashim, M. A. (2015). Functionalization of graphene using deep eutectic solvents. Nanoscale Research Letters, 10, Article 324. https://doi.org/10.1186/s11671-015-1004-2
Hsieh, Y.-H., Li, Y., Pan, Z., Chen, Z., Lu, J., Yuan, J., Zhu, Z., & Zhang, J. (2020). Ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger. Ultrasonics Sonochemistry, 63, Article 104915. https://doi.org/10.1016/j.ultsonch.2019.104915
Huang, Y., Feng, F., Chen, Z.-G., Wu, T., & Wang, Z.-H. (2018). Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chemistry, 244(5), 260–265. https://doi.org/10.1016/j.foodchem.2017.10.060
Ibrahim, M. A., Alaam, M., El-Haes, H., Jalbout, A. F., & Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Ecletica Quimica, 31(3), 15–21. https://doi.org/10.1590/S0100-46702006000300002
Instituto Nacional de Metrologia, Qualidade e Tecnologia. (2020). Orientação sobre Validação de Métodos Analíticos: Documento de caráter orientativo. Coordenação Geral de Acreditação. Retrieved July 7, 2025, from https://www.gov.br/cdtn/pt-br/assuntos/documentos-cgcre-abnt-nbr-iso-iec-17025/doq-cgcre-008/view
Lima, A. C. S., Soares, D. J., Silva, L. M. R., Figueiredo, R. W., Sousa, P. H. M., & Menezes, E. A. (2014). In vitro bioaccessibility of copper, iron, zinc and antioxidant compounds of whole cashew apple juice and cashew apple fibre (Anacardium occidentale L.) following simulated gastro-intestinal digestion. Food Chemistry, 161, 142–147. https://doi.org/10.1016/j.foodchem.2014.03.123
Lin, S., Meng, X., Tan, C., Tong, Y., Wan, M., Wang, M., Zhao, Y., Deng, H., Kong, Y., & Ma, Y. (2022). Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method. Ultrasonics Sonochemistry, 89, Article 106102. https://doi.org/10.1016/j.ultsonch.2022.106102
Mar, J. M., Corrêa, R. F., Ramos, A. S., Kinupp, V. F., Sanches, E. A., Campelo, P. H., & Bezerra, J. A. (2023). Enhancing bioactive compound bioaccessibility in Tapirira guianensis juices through ultrasound-assisted applications. Processes, 11(9), Article 2718. https://doi.org/10.3390/pr11092718
Mar, J. M., Silva, L. S., Moreira, W. P., Biondo, M. M., Pontes, F. L. D., Campos, F. R., Kinupp, V. F., Campelo, P. H., Sanches, E. A, & Bezerra, J. A. (2021). Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chemistry, 356, Article 129723. https://doi.org/10.1016/j.foodchem.2021.129723
Mar, J. M., Silva, L. S., Rabello, M. S., Biondo, M. M., Kinupp, V. F., Campelo, P. H., Bruginski, E., Campos, F. R., Bezerra, J. A., & Sanches, E. A. (2021). Development of alginate/inulin carrier systems containing non-conventional Amazonian berry extracts. Food Research International, 139, Article 109838. https://doi.org/10.1016/j.foodres.2020.109838
Naseem, Z., Shehzad, R. A., Ihsan, A., Iqbal, J., Zahid, M., Pervaiz, A., & Sarwari, G. (2021). Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory. Chemical Physics Letters, 769, Article 138427. https://doi.org/10.1016/j.cplett.2021.138427
Paterson, S., Majchrzak, M., Alexandru, D., Di Bella, S., Fernández-Tomé, S., Arranz, E., Fuente, M. A., Gómez-Cortés, P., & Hernández-Ledesma, B. (2024). Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chemistry, 453, Article 139686. https://doi.org/10.1016/j.foodchem.2024.139686
Rodrigues, L. S., Ferreira, D. S., Pereira-Filho, E. R., & Pereira, F. M. V. (2025). Mineral and trace element analysis of non-conventional food plants using ICP OES and chemometric techniques. Food Chemistry, 472, Article 142854. https://doi.org/10.1016/j.foodchem.2025.142854
Santana, A. P. R., Andrade, D. F., Guimarães, T. G. S., Amaral, C. D. B., Oliveira, A., & Gonzalez, M. H. (2020). Synthesis of natural deep eutectic solvents using a mixture design for extraction of animal and plant samples prior to ICP-MS analysis. Talanta, 216, Article 120956. https://doi.org/10.1016/j.talanta.2020.120956
Santos-Martín, M., Cubero-Cardoso, J., González-Domínguez, R., Cortés-Triviño, E., Sayago, A., Urbano, J., & Fernández-Recamales, A. (2023). Biomass and bioenergy ultrasound-assisted extraction of phenolic compounds from blueberry leaves using natural deep eutectic solvents (NADES) for the valorization of agrifood wastes. Biomass and Bioenergy, 175, Article 106882. https://doi.org/10.1016/j.biombioe.2023.106882
Scrob, T., Hosu, A., & Cimpoiu, C. (2019). The influence of in vitro gastrointestinal digestion of brassica oleracea florets on the antioxidant activity and chlorophyll, carotenoid and phenolic content. Antioxidants, 8(7), Article 212. https://doi.org/10.3390/antiox8070212
Shikov, A. N., Shikova, V. A., Whaley, A. O., Burakova, M. A., Flisyuk, E. V., Whaley, A. K., Terninko, I. I., Generalova, Y. E., Gravel, I. V., & Pozharitskaya, O. N. (2022). The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules, 27(22), Article 7690. https://doi.org/10.3390/molecules27227690
Silva, D. T., Pauletto, R., Cavalheiro, S. S., Bochi, V. C., Rodrigues, E., Weber, J., Silva, C. B., Morisso, F. D. P., Barcia, M. T., & Emanuelli, T. (2020). Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. Journal of Food Composition and Analysis, 89, Article 103470. https://doi.org/10.1016/j.jfca.2020.103470
Silva, E. P., David, J. M., David, J. P., Garcia, G. H. T., & Silva, M. T. (2020). Chemical composition of biological active extracts of Tapirira guianensis (Anacardiaceae). Quimica Nova, 43(9), 1216–1219. https://doi.org/10.21577/0100-4042.20170605
Soukaina, K., Safa, Z., Soukaina, H., Hicham, C., & Bouchra, C. (2024). Choline chloride-based deep eutectic solvents (NADES): Potential use as green extraction media for polyphenols from Mentha pulegium, antioxidant activity, and antifungal activity. Microchemical Journal, 199, Article 110174. https://doi.org/10.1016/j.microc.2024.110174