Evaluation of different heat treatments applied to UHT milk added with transglutaminase

Authors

DOI:

https://doi.org/10.5327/fst.00475

Keywords:

hydrolyzed milk, transglutaminase, heat stress

Abstract

Milk is a nutritionally rich food, seen as a source of essential macronutrients and micronutrients. Lactose, which is milk’s main carbohydrate, can be poorly metabolized by intolerant individuals, and it has led to the production of milk types with hydrolyzed lactose because they are more susceptible to non-enzymatic browning (Maillard reaction). Milk is subjected to heat treatments for preservation purposes, but it can cause undesirable changes in it. Strategies such as using stabilizing salts and transglutaminase have been explored as ways to minimize these effects. This enzyme catalyzes isopeptide bonds and improves milk technological quality. The aim of the present study was to investigate physicochemical and colorimetric parameters in whole milk, in whole milk added with transglutaminase, in lactose-free whole milk, and in lactose-free whole milk added with transglutaminase treated under different thermal conditions. Results have shown that refrigeration had a significant impact on hydrogen potential, ionic calcium, and particle size. In addition, transglutaminase addition increased thermal coagulation time in zero-lactose whole milk. Enzyme transglutaminase increased the browning index in most whole milk samples and reduced it in zero-lactose whole milk. Finally, this enzyme was able to reduce particle size.

Downloads

Download data is not yet available.

References

Agência Nacional de Vigilância Sanitária (2021). Resolução da Diretoria Colegiada - RDC nº 585, de 10 de dezembro de 2021. Agência Nacional de Vigilância Sanitária.

Anema, S. G. (2017). Storage stability and age gelation of reconstituted ultra-high temperature skim milk. International Dairy Journal, 75, 56–67. https://doi.org/10.1016/j.idairyj.2017.06.006

Bi, H., Wang, Y., Guo, Y., Liao, Z., & Na, Z. (2023). Influence of pasteurization on maillard reaction in lactose-free milk. Molecules, 28(20), Article 7105. https://doi.org/10.3390/molecules28207105

Bönisch, M. P., Tolkach, A., & Kulozik, U. (2006). Inactivation of an indigenous transglutaminase inhibitor in milk serum by means of UHT-treatment and membrane separation techniques. International Dairy Journal, 16(6), 669–678. https://doi.org/10.1016/j.idairyj.2005.08.014

Brasil (2022). Ministry of Health. RDC No. 728, of July 1, 2022. Provides for enzymes and enzyme preparations for use as adjuvants of technology in the production of food intended for human consumption. Official Gazette of the Federative Republic of Brazil.

Chen, C. C., & Hsieh, J. F. (2016). Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase. Scientific Reports, 6(1), Article 39040. https://doi.org/10.1038/srep39040

Cruz, A. G. D., Zacarchenco, P. B., Oliveira, C. A. F. D., & Corassin, C. H. (2016). Química, bioquímica, análise sensorial e nutrição no processamento de leite e derivados. Elsevier.

Da Silva Araújo, C., Vimercati, W. C., Macedo, L. L., Lima, R. R., Sant'Ana, C. T., de Paula, S. C. S. E., Santos, M. F., de Souza, H. L. S., Martins, P. H. A., Fonseca, H. C., & de Paula, R. R. (2021). Thermal processing of milk: Thermalization, pasteurization and UHT (Vol. 12). Poisson.

Duerasch, A., Wissel, J., & Henle, T. (2018). Reassembling of alkali-treated casein micelles by microbial transglutaminase. Journal of Agricultural and Food Chemistry, 66(44), 11748–11756. https://doi.org/10.1021/acs.jafc.8b04000

Elhasan, S. M., Bushara, A. M., Abdelhakam, K. E., Elfaki, H. A., Eibaid, A. I., Farahat, F. H., & Sukrab, A. M. (2017). Effect of heat treatments on physico-chemical properties of milk samples. Journal of Academia and Industrial Research, 6(3), Article 40.

Fagnani, R., de Araújo, J. P. A., & Botaro, B. G. (2018). Field findings about milk ethanol stability: a first report of interrelationship between α-lactalbumin and lactose. Journal of the Science of Food and Agriculture, 98(7), 2787–2792. https://doi.org/10.1002/jsfa.8775

Fox, P. F. (Ed.). (1989). Heat-induced changes in milk. IDF.

Francisquini, J. D. A., Altivo, R., Diaz, C. C. M., Da Costa, J. D. C., Kharfan, D., Stephani, R., & Perrone, I. T. (2023). Physicochemical analysis of thermally treated commercial plant-based beverages coffee added. European Food Research and Technology, 249(12), 3191–3199. https://doi.org/10.1007/s00217-023-04359-x

Francisquini, J. D. A., Cunha, C. N., Diaz, C. C. M., Barbosa, L. R., Altivo, R., Alves, N. M. G., Brito, M. C., Stephani, R., & Perrone, I. T. (2024). The effect of transglutaminase on the characterization of lactose-free skimmed milk powder. European Food Research and Technology, 250(5), 1417–1431. https://doi.org/10.1007/s00217-024-04476-1

Gaspar, A. L. C., & de Góes-Favoni, S. P. (2015). Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry, 171, 315–322. https://doi.org/10.1016/j.foodchem.2014.09.019

Gaucheron, F. (2005). The minerals of milk. Reproduction Nutrition Development, 45(4), 473–483. https://doi.org/10.1051/rnd:2005030

Geerts, J. P., Bekhof, J. J., & Scherjon, J. W. (1983). Determination of calcium ion activities in milk with an ion-selective electrode. A linear relationship between the logarithm of time and the recovery of the calcium ion activity after heat treatment. Netherlands Milk and Dairy Journal, 37(4), 197–212.

Gharibzahedi, S. M. T., Koubaa, M., Barba, F. J., Greiner, R., George, S., & Roohinejad, S. (2018). Recent advances in the application of microbial transglutaminase crosslinking in cheese and ice cream products: A review. International Journal of Biological Macromolecules, 107(Part B), 2364–2374. https://doi.org/10.1016/j.ijbiomac.2017.10.115

Guetouache, M., Guessas, B., & Medjekal, S. (2014). Composition and nutritional value of raw milk. Issues in Biological Sciences and Pharmaceutical Research, 2(10), 115-122. https://doi.org/10.15739/ibspr.005

Holt, C. (1995). Effect of heating and cooling on the milk salts and their interaction with casein. Bulletin of International Dairy Federation.

Karlsson, M. A., Langton, M., Innings, F., Malmgren, B., Höjer, A., Wikström, M., & Lundh, Å. (2019). Changes in stability and shelf-life of ultra-high temperature treated milk during long term storage at different temperatures. Heliyon, 5(9), Article e02431. https://doi.org/10.1016/j.heliyon.2019.e02431

Krishna, T. C., Najda, A., Bains, A., Tosif, M. M., Papliński, R., Kapłan, M., & Chawla, P. (2021). Influence of ultra-heat treatment on properties of milk proteins. Polymers, 13(18), Article 3164. https://doi.org/10.3390/polym13183164

Li, M., Li, Q., Kang, S., Cao, X., Zheng, Y., Wu, J., Shao, J., Yang, M., & Yue, X. (2020). Characterization and comparison of lipids in bovine colostrum and mature milk based on UHPLC-QTOF-MS lipidomics. Food Research International, 136, Article 109490. https://doi.org/10.1016/j.foodres.2020.109490

Li, S., Ye, A., & Singh, H. (2021). Physicochemical changes and age gelation in stored UHT milk: Seasonal variations. International Dairy Journal, 118, Article 105028. https://doi.org/10.1016/j.idairyj.2021.105028

Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175. https://doi.org/10.1016/S0260-8774(00)00154-0

Miwa, N. (2020). Innovation in the food industry using microbial transglutaminase: Keys to success and future prospects. Analytical Biochemistry, 597, Article 113638. https://doi.org/10.1016/j.ab.2020.113638

Mostafa, H. S. (2020). Microbial transglutaminase: An overview of recent applications in food and packaging. Biocatalysis and Biotransformation, 38(3), 161–177. https://doi.org/10.1080/10242422.2020.1720660

Mullan, W. M. A. (2018). Calculator for determining the lethality and chemical changes in UHT-heated products using the trapezoid and Simpson's rules. Retrieved from https://www.dairyscience.info/index.php/thermal-processing/334-download-spreadsheets.html

O'Sullivan, M. M., Kelly, A. L., & Fox, P. F. (2002). Effect of transglutaminase on the heat stability of milk: a possible mechanism. Journal of Dairy Science, 85(1), 1–7.

Pereira, C., Schmidt, C. A. P., Kalschne, D. L., Carpes, S. T., Ourique, F., Ferreira, C., Grinevicius, V. M. A. de S., Zibetti, A. W., Barreto, P. L. M., Pedrosa, R. C., & Sant'Anna, E. S. (2020). Effect of lactase, transglutaminase and temperature on ice cream crystal by a response surface methodology approach. Research, Society and Development, 9(11), Article e72191110138.

Pereira, P. C. (2014). Milk nutritional composition and its role in human health. Nutrition, 30(6), 619-627. https://doi.org/10.1016/j.nut.2013.10.011

Pistolesi, D., & Mascherpa, V. (2015). F0 A technical note. Fedegari.

Puri, R., Bot, F., Singh, U., & O'Mahony, J. A. (2021). Influence of transglutaminase crosslinking on casein protein fractionation during low temperature microfiltration. Foods, 10(12), Article 3146. https://doi.org/10.3390/foods10123146

Raak, N., & Corredig, M. (2022). Kinetic aspects of casein micelle cross-linking by transglutaminase at different volume fractions. Food Hydrocolloids, 128, Article 107603. https://doi.org/10.1016/j.foodhyd.2022.107603

Ranvir, S., Sharma, R., Gandhi, K., & Mann, B. (2020). Assessment of physico-chemical changes in UHT milk during storage at different temperatures. Journal of Dairy Research, 87(2), 243–247. https://doi.org/10.1017/S0022029920000266

Ritota, M., Di Costanzo, M. G., Mattera, M., & Manzi, P. (2017). New trends for the evaluation of heat treatments of milk. Journal of Analytical Methods in Chemistry, 2017(1), Article 1864832. https://doi.org/10.1155/2017/1864832

Romero-Velarde, E., Delgado-Franco, D., García-Gutiérrez, M., Gurrola-Díaz, C., Larrosa-Haro, A., Montijo-Barrios, E., Muskiet, F. A. J., Vargas-Guerrero, B., & Geurts, J. (2019). The importance of lactose in the human diet: Outcomes of a Mexican consensus meeting. Nutrients, 11(11), Article 2737. https://doi.org/10.3390/nu11112737

Salunke, P., & Metzger, L. E. (2023). Functional properties of milk protein concentrate and micellar casein concentrate as affected by transglutaminase treatment. Food Hydrocolloids, 137, Article 108367. https://doi.org/10.1016/j.foodhyd.2022.108367

Shibao, J., & Bastos, D. H. M. (2011). Maillard reaction products in foods: implications for human health. Revista de Nutrição, 24(6), 895–904. https://doi.org/10.1590/S1415-52732011000600010

Silva, N. N., Casanova, F., Pinto, M. D. S., Carvalho, A. F. D., & Gaucheron, F. (2019). Casein micelles: from monomers to supramolecular structure. Brazilian Journal of Food Technology, 22, Article e2018185. https://doi.org/10.1590/1981-6723.18518

Silva, P. H. F. D. (2003). UHT milk: determining factors for sedimentation and gelation.

Singh, J., Dean, A., Prakash, S., Bhandari, B., & Bansal, N. (2021). Ultra-high temperature stability of milk protein concentrate: Effect of mineral salts addition. Journal of Food Engineering, 300, Article 110503. https://doi.org/10.1016/j.jfoodeng.2021.110503

Singh, P., Arora, S., Kathuria, D., Singh, R., Rao, P. S., & Sharma, V. (2024). Developing low-lactose milk powder: A multi-enzyme approach to reduce Maillard browning. Innovative Food Science & Emerging Technologies, 98, Article 103849. https://doi.org/10.1016/j.ifset.2024.103849

Singh, P., Rao, P. S., Sharma, V., & Arora, S. (2021). Physico-chemical aspects of lactose hydrolysed milk system along with detection and mitigation of maillard reaction products. Trends in Food Science & Technology, 107, 57–67. https://doi.org/10.1016/j.tifs.2020.11.030

Stobiecka, M., Król, J., & Brodziak, A. (2022). Antioxidant activity of milk and dairy products. Animals, 12(3), 245. https://doi.org/10.3390/ani12030245

Tarapatskyy, M., Domagała, J., Zaguła, G., Saletnik, B., & Puchalski, C. (2019). The effect of transglutaminase on colloidal stability of milk proteins. Journal of Food Measurement and Characterization, 13, 2339–2346. https://doi.org/10.1007/s11694-019-00153-0

Tsioulpas, A., Koliandris, A., Grandison, A. S., & Lewis, M. J. (2010). Effects of stabiliser addition and in-container sterilization on selected properties of milk related to casein micelle stability. Food Chemistry, 122(4), 1027–1034. https://doi.org/10.1016/j.foodchem.2010.03.063

Tsioulpas, A., Lewis, M. J., & Grandison, A. S. (2007). Effect of minerals on casein micelle stability of cows' milk. Journal of Dairy Research, 74(2), 167–173. https://doi.org/10.1017/s0022029906002330

Vasić, K., Knez, Ž., & Leitgeb, M. (2023). Transglutaminase in foods and biotechnology. International Journal of Molecular Sciences, 24(15), Article 12402. https://doi.org/10.3390/ijms241512402

Velazquez-Dominguez, A., Hiolle, M., Abdallah, M., Delaplace, G., & Peixoto, P. P. (2023). Transglutaminase cross-linking on dairy proteins: Functionalities, patents, and commercial uses. International Dairy Journal, 143, Article 105688. https://doi.org/10.1016/j.idairyj.2023.105688

Walstra, P., Walstra, P., Wouters, J. T., & Geurts, T. J. (2005). Dairy science and technology. CRC Press.

Wang, Q., & Ma, Y. (2020). Effect of temperature and pH on salts equilibria and calcium phosphate in bovine milk. International Dairy Journal, 110, Article 104713. https://doi.org/10.1016/j.idairyj.2020.104713

Ye, R., & Harte, F. (2013). Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of Dairy Science, 96(2), 799–805. https://doi.org/10.3168/jds.2012-5838

Downloads

Published

2025-08-11

How to Cite

SILVA, R. A. D. da, Francisquini, J., Alves, N. M. G., Oliveira, E. R. S. de, Carvalho, M. F. C., Perrone, I., & Stephani, R. (2025). Evaluation of different heat treatments applied to UHT milk added with transglutaminase. Food Science and Technology, 45. https://doi.org/10.5327/fst.00475

Issue

Section

Original Articles