Bioactive compounds and pollen profile of honeys from northern Minas Gerais, Brazil
DOI:
https://doi.org/10.5327/fst.00473Keywords:
honey composition, melissopalynology, secondary metabolites, dereplication, spectrometryAbstract
The composition of honey is influenced by its botanical origin and geographical area. Monofloral honeys, such as those from Aroeira (Astronium urundeuva), Betônica (Hyptis sp.), Coffee (Coffea arabica), Cipó-uva (Serjania lethalis), Pequi (Caryocar brasilense), and Velame (Croton urucurana), have distinct chemical profiles that impact their sensory properties and bioactive potential. There is limited information on the chemical composition of specific monofloral honeys, and this study provides valuable data for their characterization. This study analyzed seven honey samples collected in the northern region of Minas Gerais and commercialized by Cooperativa dos Apicultores e Agricultores Familiares do Norte de Minas in 2022. The aim was to classify the honeys based on melissopalynological analysis and chemical characterization using liquid chromatography coupled with high-resolution mass spectrometry. Melissopalynological analysis identified three monofloral honeys, three with dominant flowering sources, and one multifloral honey. Chemical characterization by liquid chromatography coupled with high-resolution mass spectrometry revealed 26 bioactive compounds, including plant hormones, alkaloids, flavonoids, and coumarins. Among the identified compounds, flavonoids and coumarins are noteworthy due to their potential antioxidant and antimicrobial properties. This study expands knowledge on the chemical composition of monofloral honeys from Brazilian Cerrado species, highlighting their bioactive potential and possible pharmaceutical, nutritional, and medicinal applications.
Downloads
References
Acacio, T. M., Alves, T. M. A., Veloso, P. H. F., Royo, V. A., Oliveira, D. A., Sacramento, V. M., Olimpio, E. L. A., Melo Junior, A. F., Menezes, E. V., Souza, L. F., & Pires, N. C. (2023). Analysis of honeys by ultra performance liquid chromatography coupled to mass spectrometry. Journal of Chromatography & Separation Techniques, 14(1), Article 493. https://www.longdom.org/open-access/analysis-of-honeys-by-ultra-performance-liquid-chromatography-coupled-to-mass-spectrometry-97084.html
Al-Kafaween, M. A., Alwahsh, M., Hilmi, A. B. M., & Abulebdah, D. H. (2023). Physicochemical characteristics and bioactive compounds of different types of honey and their biological and therapeutic properties: a comprehensive review. Antibiotics, 12(2), Article 337. https://doi.org/10.3390/antibiotics12020337
Almeida-Muradian, L. B, Barth, M. O., Dietemann, V., Eyer, M., Freitas, A. S., Martel, A.-C., Marcazzan, G. L., Marchese, C. M., Mucignat-Caretta, C., Pascual-Maté, A., Reybroeck, W., Sancho, M. T., & Sattler, J. A. G. (2020). Standard methods for Apis mellifera honey research. Journal of Apicultural Research, 59(3), 1–62. https://doi.org/10.1080/00218839.2020.1738135
Ares, A. M., Valverde, S., Bernal, J. L., Nozal, M. J., & Bernal, J. (2015). Development and validation of a LC–MS/MS method to determine sulforaphane in honey. Food Chemistry, 181, 263–269. https://doi.org/10.1016/j.foodchem.2015.02.085
Barth, O. M. (1989). O pólen no mel brasileiro (Online edition 2019). Instituto Oswaldo Cruz. https://www.researchgate.net/publication/311946380_O_Polen_no_Mel_Brasileiro
Berton, S. B. R., Cabral, M. R. P., Jesus, G. A. M., Sarragiotto, M. H., Pilau, E. J., Martins, A. F., Bonafé, E. G., & Matsushita, M. (2020). Ultra-high-performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities. Industrial Crops Products, 154, Article 112701. https://doi.org/10.1016/j.indcrop.2020.112701
Bianco, G., Abate, S., Labella, C., & Cataldi, T. R. I. (2009). Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 23(7), 1065–1074. https://doi.org/10.1002/rcm.3969
Chen, H., Wang, K., Ji, W., Xu, H., Liu, Y., Wang, S., Wang, Z., Gao, F., Lin, Z., & Ji, T. (2021). Metabolomic analysis of honey bees (Apis mellifera) response to carbendazim based on UPLC-MS. Pesticide Biochemistry and Physiology, 179, Article 104975. https://doi.org/10.1016/j.pestbp.2021.104975
Escuredo, O., & Seijo, M. C. (2022). Authenticity of honey: characterization, bioactivities and sensorial properties. Foods, 11(9), Article 1301. https://doi.org/10.3390/foods11091301
Food and Agriculture Organization of the United Nations & World Health Organization. (2019). Codex Alimentarius: International Food Standards. Standard for Honey. CXS 12-1981.
Grossert, J. S., Fancy, P. D., & White, R. L. (2005). Fragmentation pathways of negative ions produced by electrospray ionization of acyclic dicarboxylic acids and derivatives. Canadian Journal of Chemistry, 83(11), 1878–1890. https://doi.org/10.1139/v05-214
Guan, H., Li, P., Wang, Q., Zeng, F., Wang, D., Zhou, M., Zhou, M., He, X., Liao, S., & Pan, W. (2022). Systematically exploring the chemical ingredients and absorbed constituents of polygonum capitatum in hyperuricemia rat plasma using UHPLC-Q-Orbitrap HRMS. Molecules, 27(11), Article 3521. https://doi.org/10.3390/molecules27113521
Hailu, D., & Belay, A. (2020). Melissopalynology and antioxidant properties used to differentiate Schefflera abyssinica and polyfloral honey. PLOS One, 15(10), Article e0240868. https://doi.org/10.1371/journal.pone.0240868
Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., … Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714. https://doi.org/10.1002/jms.1777
Ikegbunam N. C., Walter, J. O., Osayi, E. E., Njokuocha, R. C., Ezeadim, M. I., & Nweze, N. O. (2023). Melissopalynological study of Apis mellifera L. honey sourced from different localities in the middle belt of Nigeria. Bio-Research, 21(1), 1845–1858. https://doi.org/10.4314/br.v21i1.8
Kasiotis, K. M., Baira, E., Iosifidou, S., Manea-Karga, E., Tsipi, D., Gounari, S., Theologidis, I., Barmpouni, T., Danieli, P. P., Lazzari, F., Dipasquale, D., Petrarca, S., Shairra, S., Ghazala, N. A., El-Wahed, A. A. A., El-Gamal, S. M. A., & Machera, K. (2023). Fingerprinting Chemical Markers in the Mediterranean Orange Blossom Honey: UHPLC-HRMS Metabolomics Study Integrating Melissopalynological Analysis, GC-MS and HPLC-PDA-ESI/MS. Molecules, 28(9), Article 3967. https://doi.org/10.3390/molecules28093967
Lopes, A. R., Moura, M. B. V., Grazina, L., Costa, J., Amaral, J. S., Pinto, M. A., & Mafra, I. (2023). Authentication of incense (Pittosporum undulatum Vent.) honey from the Azores (Mel dos Açores) by a novel real-time PCR approach. Food Chemistry, 411, Article 135492. https://doi.org/10.1016/j.foodchem.2023.135492
Louveaux, J., Maurizio, A., & Vorwohl, G. (1978). Methods of Melissopalynology. Bee World, 59(4), 139–157. https://doi.org/10.1080/0005772x.1978.11097714
Mannina, L., Sobolev, A. P., Di Lorenzo, A., Vista, S., Tenore, G. C., & Daglia, M. (2015). Chemical composition of different botanical origin honeys produced by sicilian black honeybees (Apis mellifera ssp. sicula). Journal of Agricultural and Food Chemistry, 63(25), 5864–5874. https://doi.org/10.1021/jf506192s
March, R. E., & Miao, X.-S. (2004). A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. International Journal of Mass Spectrometry, 231(2–3), 157–167. https://doi.org/10.1016/j.ijms.2003.10.008
Matsuda, F., Miyazawa, H., Wakasa, K., & Miyagawa, H. (2005). Quantification of Indole-3-Acetic Acid and Amino Acid Conjugates in Rice by Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry. Bioscience, Biotechnology, and Biochemistry, 69(4), 778–783. https://doi.org/10.1271/bbb.69.778
Olas, B. (2020). Honey and Its Phenolic Compounds as an Effective Natural Medicine for Cardiovascular Diseases in Humans? Nutrients, 12(2), Article 283. https://doi.org/10.3390/nu12020283
Pătruică, S., Alexa, E., Obiștioiu, D., Cocan, I., Radulov, I., Berbecea, A., Lazăr, R. N., Simiz, E., Vicar, N. M., Hulea, A., & Moraru, D. (2022). Chemical composition, antioxidant and antimicrobial activity of some types of honey from Banat region, Romania. Molecules, 27(13), Article 4179. https://doi.org/10.3390/molecules27134179
Pita-Calvo, C., Guerra-Rodríguez, M. E., & Vázquez, M. (2017). Analytical methods used in the quality control of honey. Journal of Agricultural and Food Chemistry, 65(4), 690–703. https://doi.org/10.1021/acs.jafc.6b04776
Satheeshkumar, N., Shantikumar, S., & Komali, M. (2014). Identification and quantification of aldose reductase inhibitory flavonoids in herbal formulation and extract of gymnema sylvestre using HPLC-PDA and LC-MS/MS. Chromatography Research International, 2014, 1–8. https://doi.org/10.1155/2014/518175
Shan, S.-J., Luo, J., Xu, D.-R., Niu, X.-L., Xu, D.-Q., Zhang, P.-P., & Kong, L.-Y. (2018). Elucidation of micromolecular phenylpropanoid and lignan glycosides as the main antioxidants of Ginkgo seeds. Industrial Crops and Products, 112, 830–838. https://doi.org/10.1016/j.indcrop.2017.12.013
Šedík, P., Pocol, C. B., Horská, E., & Fiore, M. (2019). Honey: food or medicine? A comparative study between Slovakia and Romania. British Food Journal, 121(6), 1281–1297. https://doi.org/10.1108/bfj-12-2018-0813
Singh, P., Bajpai, V., Khandelwal, N., Varshney, S., Gaikwad, A. N., Srivastava, M., Singh, B., & Kumar, B. (2021). Determination of bioactive compounds of Artemisia Spp. plant extracts by LC–MS/MS technique and their in-vitro anti-adipogenic activity screening. Journal of Pharmaceutical and Biomedical Analysis, 193, Article 113707. https://doi.org/10.1016/j.jpba.2020.113707
Soares, S., Amaral, J. S., Oliveira, M. B. P. P., & Mafra, I. (2017). A comprehensive review on the main honey authentication issues: production and origin. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1072–1100. https://doi.org/10.1111/1541-4337.12278
Soares‐Bezerra, R. J., Ferreira, N. C. S., Alves, T. M. A., Zani, C. L., Rosa, L. H., Faria, R. X., Frutuoso, V. S., & Alves, L. A. (2019). A new insight into purinergic pharmacology: Three fungal species as natural P2X7R antagonists. Phytotherapy Research, 33(9), 2319–2328. https://doi.org/10.1002/ptr.6412
Stanojević, J. S., Zvezdanović, J. B., & Marković, D. Z. (2015). Riboflavin degradation in the presence of quercetin in methanol under continuous UV-B irradiation: the ESI–MS–UHPLC analysis. Monatshefte für Chemie – Chemical Montlhy, 146(11), 1787–1794. https://doi.org/10.1007/s00706-015-1561-1
Sun, H., Lv, H., Zhang, Y., Wang, X., Bi, K., & Cao, H. (2007). A rapid and sensitive UPLC-ESI MS method for analysis of isofraxidin, a natural antistress compound, and its metabolites in rat plasma. Journal of Separation Science, 30(18), 3202–3206. https://doi.org/10.1002/jssc.200700251
Sung, J., Wang, L., Long, D., Yang, C., & Merlin, D. (2021). PepT1-knockout mice harbor a protective metabolome beneficial for intestinal wound healing. American Journal of Physiology-Gastrointestinal and Liver Physiology, 320(5), G888–G896. https://doi.org/10.1152/ajpgi.00299.2020
Suto, M., Kawashima, H., & Nakamura, Y. (2020). Determination of Organic Acids in Honey by Liquid Chromatography with Tandem Mass Spectrometry. Food Analytical Methods, 13(12), 2249–2257. https://doi.org/10.1007/s12161-020-01845-w
Tortosa, M., Cartea, M. E., Rodríguez, V. M., & Velasco, P. (2018). Unraveling the metabolic response of Brassica oleracea exposed to Xanthomonas campestris pv. campestris. Journal of the Science of Food and Agriculture, 98(10), 3675–3683. https://doi.org/10.1002/jsfa.8876
Tuberoso, C. I. G., Bifulco, E., Caboni, P., Sarais, G., Cottiglia, F., & Floris, I. (2010). Lumichrome and phenyllactic acid as chemical markers of thistle (galactites tomentosa moench) honey. Journal of Agricultural and Food Chemistry, 59(1), 364–369. https://doi.org/10.1021/jf1039074
Vazquez, L., Armada, D., Celeiro, M., Dagnac, T., & Llompart, M. (2021). Evaluating the Presence and Contents of Phytochemicals in Honey Samples: Phenolic Compounds as Indicators to Identify Their Botanical Origin. Foods, 10(11), Article 2616. https://doi.org/10.3390/foods10112616
Vonaparti, A., Lyris, E., Panderi, I., Koupparis, M., & Georgakopoulos, C. (2009). Direct injection liquid chromatography/electrospray ionization mass spectrometric horse urine analysis for the quantification and confirmation of threshold substances for doping control. II. Determination of theobromine. Rapid Communications in Mass Spectrometry, 23(7), 1020–1028. https://doi.org/10.1002/rcm.3967
Widemann, E., Heitz, T., Miesch, L., Miesch, M., Heinrich, C., Pinot, F., & Lugan, R. (2015). Identification of the 12-oxojasmonoyl-isoleucine, a new intermediate of jasmonate metabolism in Arabidopsis, by combining chemical derivatization and LC–MS/MS analysis. Metabolomics, 11(4), 991–997. https://doi.org/10.1007/s11306-014-0754-7
Wu, J., Duan, Y., Gao, Z., Yang, X., Zhao, D., Gao, J., Han, W., Li, G., & Wang, S. (2020). Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. LWT, 134, Article 110225. https://doi.org/10.1016/j.lwt.2020.110225
Xiao, Y. C., Liu, L. T., Bian, J. J., Yan, C. Q., Ye, L., Zhao, M. X., Huang, Q. S., Wang, W., Liang, K., Shi, Z. F., & Ke, X. (2018). Identification of multiple constituents in Shuganjieyu capsule and rat plasma after oral administration by ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry. Acta Chromatographica, 30(2), 95–102. https://doi.org/10.1556/1326.2017.00094
Yi, S., Zhang, G., Liu, M., Yu, W., Cheng, G., Luo, L., & Ning, F. (2023). Citrus honey ameliorates liver disease and restores gut microbiota in alcohol–feeding mice. Nutrients, 15(5), Article 1078. https://doi.org/10.3390/nu15051078
Zhang, R., Huang, G., Ren, Y., Wang, H., Ye, Y., Guo, J., Wang, M., Zhu, W., & Yu, K. (2022). Effects of dietary indole-3-carboxaldehyde supplementation on growth performance, intestinal epithelial function, and intestinal microbial composition in weaned piglets. Frontiers in Nutrition, 9, Article 896815. https://doi.org/10.3389/fnut.2022.896815
Zhao, H., Jiang, M., Liang, Q., Xie, C., Song, S., Wang, J., Bai, G., & Luo, G. (2013). Fragmentation pathway studies of several plant hormones using an electrospray ionization-quadrupole/time-of-flight mass spectrometer. International Journal of Mass Spectrometry, 335, 7–15. https://doi.org/10.1016/j.ijms.2012.10.011