Antimicrobial peptides from free-range chicken egg white prepared ultrasound
DOI:
https://doi.org/10.5327/fst.00456Keywords:
antimicrobial peptides, free-range eggs, protein hydrolysis, sonication, high frequencyAbstract
Antimicrobial peptides are biomolecules that have great potential for pharmaceutical application, as they are considered to be natural alternatives for combating multi-resistant agents to traditionally marketed drugs. The objective of this research was to prospect for new antimicrobial peptides obtained from free-range egg white proteins that had been pre-treated by ultrasonic sonication, and subjected to the hydrolytic action of commercial trypsin. The maximum percentage of 25.90% proteolysis was found from the application of sonication pre-treatment of egg white for 16 minutes and 29 seconds, followed by enzymatic hydrolysis for 128 minutes and 35 seconds. The peptides (< 3 kDa) were evaluated for their antimicrobial action against six bacterial strains. These tests presented a minimum inhibitory concentration of 1.56 mg.mL–1 for the strains Bacillus cereus ATCC 11778, Enterococcus faecalis ATCC 29212, and Salmonella typhimurium 31194; while for the strains Listeria monocytogenes ATCC 19117, Escherichia coli ATCC 25922, and Serratia marcescens ATCC 13880 the value of minimum bactericidal concentration was 0.78 mg.mL–1. Furthermore, a minimum bactericidal concentration of 0.78 mg.mL–1 was observed for all strains, being considered equivalent to the minimum inhibitory concentration. The study of cell death kinetics revealed excellent antimicrobial action in less than 120 minutes for all bacterial strains evaluated. 10 were identified and considered significant for the present study. These characteristics have not yet been reported in scientific studies, nor are they present in databases related to proteins and peptides. Given these results, this protein substrate has a high potential for use in the prospecting of antimicrobial products.
Downloads
References
Abdel-Hamid, M., Goda, H. A., Gobba, C., Jessen, H., & Osman, A. (2016). Antibacterial activity of papain hydrolysed camel whey and its fractions. International Dairy Journal, 61, 91–98. https://doi.org/10.1016/j.idairyj.2016.04.004
Acquah, C., Chan, Y. W., Pan, S., Agyei, D., & Udenigwe, C. C. (2019). Structure-informed separation of bioactive peptides. Journal of Food Biochemistry, 43(1), Article e12765. https://doi.org/10.1111/jfbc.12765
Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. https://doi.org/10.1021/jf60226a042
Ageitos, J. M., Sánchez-Pérez, A., Calo-Mata, P., & Villa, T. G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138. https://doi.org/10.1016/j.bcp.2016.09.018
Alsaggar, M., Al-Hazabreh, M., Tall, Y. A., Al-Tarawneh, A., Darweesh, R. S., & Masadeh, M. (2022). HAZ, a novel peptide with broad-spectrum antibacterial activity. Saudi Pharmaceutical Journal, 30(11), 1652–1658. https://doi.org/10.1016/j.jsps.2022.09.009
Bestman, M., & Bikker-Ouwejan, J. (2020). Predation in organic and free-range egg production. Animals, 10(2), Article 177. https://doi.org/10.3390/ani10020177
Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52(9), 5377–5392. https://doi.org/10.1007/s13197-015-1731-5
Clinical and Laboratory Standards Institute. (1999). M26-A. Methods for determining bactericidal activity of antimicrobial agents. Approved Guideline. CLSI.
Cochet, M.-F., Baron F., Bonnassie, S., Jan, S., Leconte, N., Jardin, J., Briard-Bion, V., Gautier, M., Andrews, S. C., Guérin-Dubiard, C., & Nau, F. (2021). Identification of new antimicrobial peptides that contribute to the bactericidal activity of egg white against Salmonella enterica serovar Enteritidis at 45 ºC. Journal of Agricultural and Food Chemistry, 69(7), 2118–2128. https://doi.org/10.1021/acs.jafc.0c06677
Ferreira, D. F. (2014). Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109–112, https://doi.org/10.1590/S1413-70542014000200001
Gao, Y., Hu, Yunpeng, Wang, J., Ahmad, H. N., & Zhu, J. (2023). Modification of low-salt myofibrillar protein using combined ultrasound pre-treatment and konjac glucomannan for improving gelling properties: Intermolecular interaction and filling effect. International Journal of Biological Macromolecules, 250, Article 126195. https://doi.org/10.1016/j.ijbiomac.2023.126195
Glinel, K. Thebault, P., Humblot, V., Pradier, C. M., & Jouenne, Y. (2012). Antibacterial surfaces developed from bio-inspired approaches. Acta Biomaterialia, 8(5), 1670–1684. https://doi.org/10.1016/j.actbio.2012.01.011
Gupta, R., Singh, M., & Pathania, R. (2023). Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Medicinal Chemistry, 30(14), 2125–2154. https://doi.org/10.1039/D3MD00143A
Hioki, Y., Tanimura, R., Iwamoto, S., & Tanaka, K. (2014). Nano-LC/MALDI-MS using a column-integrated spotting probe for analysis of complex biomolecule samples. Analytical Chemistry, 86(5), 2549–2558. https://doi.org/10.1021/ac4037069
Ikhimiukor, O. O., & Okeke, I. N. (2023). A snapshot survey of antimicrobial resistance in food-animals in low and middle-income countries. One Health, 16, Article 100489. https://doi.org/10.1016/j.onehlt.2023.100489
Jia, F., Zhang, Y., Wang, J., Peng, J., Zhao, P., Zhang, L., Yao, H., Ni, J., & Wang, K. (2019). The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides, 112, 56–66. https://doi.org/10.1016/j.peptides.2018.11.006
Jiang, J., Ding, G., Zhang, J., Zou, Y., & Qin, S. (2018). A systematic optimization design method for complex mechatronic products design and development. Mathematical Problems in Engineering, 2018, Article 3159637. https://doi.org/10.1155/2018/3159637
Knežević-Jugović, Z. D., Stefanović, A. B., Žuža, M. G., Milovanović, S. L., Jakovetić, S. M., Manojlović, V. B., & Bugarski, B. M. (2012). Effects of sonication and high-pressure carbon dioxide processing on enzymatic hydrolysis of egg white proteins. Acta Periodica Technologica, 43, 33–41. https://doi.org/10.2298/APT1243033K
Ma, B., Guo, Y., Fu, X., & Jin, Y. (2020). Identification and antimicrobial mechanisms of a novel peptide derived from egg white ovotransferrin hydrolysates. LWT, 131, Article 109720. https://doi.org/10.1016/j.lwt.2020.109720
Memarpoor-Yazdi, M., Asoodeh, A., & Chamani, J. K. (2012). A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 4(1), 278–286. https://doi.org/10.1016/j.jff.2011.12.004
Oliveira, K. B. S., Leite, M. P., Cunha, V. A., Cunha, N. B., & Franco, O. L. (2023). Challenges and advances in antimicrobial peptide development. Drug Discovery Today, 28(8), Article 103629. https://doi.org/10.1016/j.drudis.2023.103629
Pfalzgraff, A., Brandenburg, K., & Weindl, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology, 9, Article 281. https://doi.org/10.3389/fphar.2018.00281
Pimchan, T., Tian, F., Thumanu, K., Rodtong, S., & Yongsawatdigul, J. (2023). Isolation, identification, and mode of action of antibacterial peptides derived from egg yolk hydrolysate. Poultry Science, 102(7), Article 102695. https://doi.org/10.1016/j.psj.2023.102695
Prada-Prada, S., Flórez-Castillo, J., Farfán-García, A., Guzmán, F., & Hernández-Peñaranda, I. (2020). Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7. PlosOne, 15(2), Article e0229019. https://doi.org/10.1371/journal.pone.0229019
Rai, A., Seena, S., Gagliardi, T., Palma, P. J. (2023). Advances in the design of amino acid and peptide synthesized gold nanoparticles for their applications. Advances in Colloid and Interface Science, 318, Article 102951. https://doi.org/10.1016/j.cis.2023.102951
Ramazi, S., Mohammadi, N., Allahverdi, A., Khalili, E., & Abdolmaleki, P. (2022). A review on antimicrobial peptides databases and the computational tools. Database, 2022(2022), Article baac011. https://doi.org/10.1093/database/baac011
Righetto, G. M., Lopes, J. L. S., Bispo, P. M. B., André, C., Souza, J. M., Andricopulo A. D., Beltramini, L. M. & Camargo, I. L. B. C. (2023). Antimicrobial Activity of an Fmoc-Plantaricin 149 Derivative Peptide against Multidrug-Resistant Bacteria. Antibiotics, 12(2), Article 391. https://doi.org/10.3390/antibiotics12020391
Sila, A., Nedjar-Arroume N., Hedhili K., Chataigné G., Balti R., Nasri M., Dhulster P., & Bougatef A. (2014). Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT - Food Science and Technology, 55(1), 183–188. https://doi.org/10.1016/j.lwt.2013.07.021
Singh, S., Wang, M., Gao, R., Teng, P., Odom, T., Zhang, E., Xu, H., & Cai, J. (2020). Lipidated α/Sulfono-α-AA heterogeneous peptides as antimicrobial agents for MRSA. Bioorganic & Medicinal Chemistry, 28(1), Article 115241. https://doi.org/10.1016/j.bmc.2019.115241
Snoussi, M., Talledo, J. P., Rosario, N.-A., Mohammadi, S., Ha, B.-Y., Košmrlj, A., & Taheri-Araghi, S. (2018). Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife, 7, Article e38174. https://doi.org/10.7554/eLife.38174
Stefanović, A. B., Jovanović, J. R., Dojčinović, M. B., Lević, S. M., Nedović, V. A., Bugarski, B. M., & Knežević-Jugović, Z. D. (2017). Effect of the controlled high-intensity ultrasound on improving functionality and structural changes of egg white proteins. Food and Bioprocess Technology, 10(7), 1224–1239. https://doi.org/10.1007/s11947-017-1884-5
Stefanović, A. B., Jovanović, J. R., Grbavčić, S. Ž., Šekuljica, N. Ž., Manojlović, V. B., Bugarski, B. M., & Knežević-Jugović, Z. D. (2014). Impact of ultrasound on egg white proteins as a pretreatment for functional hydrolysates production. European Food Research and Technology, 239(6), 979–993. https://doi.org/10.1007/s00217-014-2295-8
Uluko, H., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y., Li, H., Cui, W., & Lv, J. (2013). Effects of microwave and ultrasound pretreatments on enzymolysis of milk protein concentrate with different enzymes. International Journal of Food Science and Technology, 48(11), 2250–2257. https://doi.org/10.1111/ijfs.12211
Venkateswarulu, T. C., Srirama, K., Mikkili, I., Md., N. B., Dulla, J. B., Alugunulla, V. N., Sweety, D., & Karlapudi, A. P. (2019). Estimation of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Antimicrobial peptides of Saccharomyces boulardii against Selected Pathogenic Strains. Karbala International Journal of Modern Science, 5(4), Article 8. https://doi.org/10.33640/2405-609X.1219
Wang, G. (2023). The antimicrobial peptide database is 20 years old: Recent developments and future directions. Protein Science, 32(10), Article e4778. https://doi.org/10.1002/pro.4778
Waseem, M., Kumar, S., & Kumar, A. (2018). Bioactive peptides. In S. Kumar (Ed.), Secondary Metabolite and Functional Food Components: Role in Health and Disease (pp. 259–287). Nova Science Publishers, Incorporated.
Zharkova, M. S., Orlov, D. S., Golubeva, O. Y., Chakchir, O. B., Eliseev, I. E., Grinchuk, T. M., & Shamova, O. V. (2019). Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Frontiers in Cellular and Infection Microbiology, 9, Article 128. https://doi.org/10.3389/fcimb.2019.00128
Zhou, M., Liu, J., Zhou, Y., Huang, X., Liu, F., Pan, S., & Hu, H. (2016). Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innovative Food Science and Emerging Technologies, 34, 205–213. https://doi.org/10.1016/j.ifset.2016.02.007
Zhu, Y., Vanga, S. K., Wang, J., & Raghavan, V. (2018). Impact of food processing on the structural and allergenic properties of egg white. Trends in Food Science and Technology, 78, 188–196. https://doi.org/10.1016/j.tifs.2018.06.005
Zouhir, A., Jridi, T., Nefzi, A., Hamida, J. B., & Sebei, K. (2016). Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils. Pharmaceutical Biology, 54(12), 3136–3150. https://doi.org/10.1080/13880209.2016.1190763