English Inhibitory action of mycocins from Wickerhamomyces anomalus on filamentous fungi present in cornmeal
DOI:
https://doi.org/10.5327/fst.00271%20Keywords:
cornmeal, filamentous fungi, mycocins, mycotoxins, Wickerhamomyces anomalusAbstract
Some species of filamentous fungi present in grain crops can be mycotoxigenic. Mycotoxins are secondary metabolites that are potentially carcinogenic, hepatotoxic, and nephrotoxic to humans and animals. In addition, they are mostly thermostable, i.e., they resist the processing and refining of grains. Wickerhamomyces anomalus is a yeast found widely in nature and was the first reported yeast capable of producing mycocins that act on both eukaryotic and prokaryotic microorganisms. Mycocins are glycoproteins that act on sensitive cells of other microorganisms without direct cell-to-cell contact. This study aimed to identify the filamentous fungi present in cornmeal and verify their inhibition against the mycocins of W. anomalus WA92, all the cornmeal samples analyzed (eight) presented colony-forming units (CFU) of filamentous fungi including some known as potential mycotoxin producers, and 10 fungal genera were identified—Acremonium sp., Alternaria sp., Aspergillus sp., Chrysosporium sp., Cladosporium sp., Fusarium sp., Mucor sp., Penicillium sp., Rhizopus sp., and Scopulariopsis sp. Tests were carried out on a solid medium containing the supernatant of mycocins from W. anomalus and showed total inhibition of the growth of these fungi. Mycocins from W. anomalus are a promising agent in the biocontrol of grain fungal populations.
Downloads
References
Anderson, G. P., Kowtha, V. A., & Taitt, C. R. (2010). Detection of fumonisin B1 and ochratoxin A in grain products using microsphere-based fluid array immunoassays. Toxins, 2(2), 297-309. https://doi.org/10.3390/toxins2020297
Araújo Alhadas, R. V., Stuart, R. M., Beux, M. R., & Pimentel, I. C. (2004). Contagem de bolores e leveduras em fubá e identificação de gêneros potencialmente toxigênicos. Visão Acadêmica, 5(2), 79-82. https://doi.org/10.5380/acd.v5i2.549
Bondy, G. S., Voss, K. A., & Haschek, W. M. (2023). Mycotoxins. Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 16(3), 393-488. https://doi.org/10.1016/B978-0-443-16153-7.00006-X
Calazans, G. F., da Silva, J. C., Delabeneta, M. F., Paris, A. P., Yassuda Filho, P., Auler, M. E., Menolli, R. A., Paula, C. R., Simão, R. de C. G., & Gandra, R. F. (2021). Antimicrobial activity of Wickerhamomyces anomalus mycocins against strains of staphylococcus aureus isolated from meats. Food Science and Technology, 41(2), 388-394. https://doi.org/10.1590/fst.39319
Fuentefria, A. M. (2007). Bioprospecção de leveduras killer com potencial para aplicação em biotipagem de microrganismos patogênicos humanos [Doctoral thesis]. UFRGS.
Hua, S. S. T., Hernlem, B. J., Yokoyama, W., & Sarreal, S. B. L. (2015). Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction. World Journal of Microbiology and Biotechnology, 31(5), 729-734. https://doi.org/10.1007/s11274-015-1824-3
Junges, D. S. B., Delabeneta, M. F., Rosseto, L. R. B., Nascimento, B. L., Paris, A. P., Persel, C., Loth, E. A., Simão, R. C. G., Menolli, R. A., Paula, C. R., & Gandra, R. F. (2020). Antibiotic Activity of Wickerhamomyces anomalus Mycocins on Multidrug-Resistant Acinetobacter baumannii. Microbial Ecology, 80(2), 278-285. https://doi.org/10.1007/s00248-020-01495-9
Kumar, P., Mahato, D. K., Kamle, M., Mohanta, T. K., & Kang, S. G. (2017). Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology, 7, 1-10. https://doi.org/10.3389/fmicb.2016.02170
Lima, J. R., Gondim, D. M. F., Oliveira, J. T. A., Oliveira, F. S. A., Gonçalves, L. R. B., & Viana, F. M. P. (2013). Use of killer yeast in the management of postharvest papaya anthracnose. Postharvest Biology and Technology, 83, 58-64. https://doi.org/10.1016/j.postharvbio.2013.03.014
Márcia, B. A., & Lázzari, F. A. (1998). Monitorament of fungi in corn, grits and corn meal. Ciência e Tecnologia de Alimentos, 18(4), 363-367. https://doi.org/10.1590/S0101-20611998000400001
Maziero, M. T., & Bersot, L. S. (2010). Micotoxinas em alimentos produzidos no Brasil. Revista Brasileira de Produtos Agroindustriais, 12(1), 89-99. https://doi.org/10.15871/1517-8595/rbpa.v12n1p89-99
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-8. https://doi.org/10.1021/ac60147a030
Mudili, V., Siddaih, C. N., Nagesh, M., Garapati, P., Naveen Kumar, K., Murali, H. S., Yli Mattila, T., & Batra, H. V. (2014). Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. Journal of the Science of Food and Agriculture, 94(13), 2674-2683. https://doi.org/10.1002/jsfa.6608
Nascimento, B. L., Delabeneta, M. F., Rosseto, L. R. B., Junges, D. S. B., Paris, A. P., Persel, C., & Gandra, R. F. (2020). Yeast Mycocins: A great potential for application in health. FEMS Yeast Research, 20(3), foaa016. https://doi.org/10.1093/FEMSYR/FOAA016
Nleya, N., Adetunji, M. C., & Mwanza, M. (2018). Current status of mycotoxin contamination of food commodities in Zimbabwe. Toxins, 10(5), 89. https://doi.org/10.3390/toxins10050089
Pereira, M. M. G., Carvalho, E. P., & Prado, G. (2002). Crescimento e produção de aflatoxinas por Aspergillus flavus e Aspergillus parasiticus. Boletim do Centro de Pesquisa de Processamento de Alimentos, 20(1), 141-156. https://doi.org/10.5380/cep.v20i1.1143
Rosseto, L. R. B., Martelli, E. C., da Silva, J. C., Nascimento, B. L., Junges, D. S. B., Delabeneta, M. F., Paris, A. P., Auler, M. E., Menolli, R. A., Simão, R. C. G., Paula, C. R., & Gandra, R. F. (2022). Susceptibility of Candida albicans Strains Isolated from Vaginal Secretion in Front of the Mycocins of Wickerhamomyces anomalus. Probiotics and Antimicrobial Proteins, 14(3), 595-601. https://doi.org/10.1007/s12602-022-09940-6
Salvatore, M. M., Andolfi, A., & Nicoletti, R. (2021). The genus cladosporium: A rich source of diverse and bioactive natural compounds. Molecules, 26(13), 3959. https://doi.org/10.3390/molecules26133959
Shabeer, S., Asad, S., Jamal, A., & Ali, A. (2022). Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins, 14(5), 307. https://doi.org/10.3390/toxins14050307
Tong, B. C.-K. (2017). 乳鼠心肌提取 HHS Public Access. Physiology & Behavior, 176(5), 139-148.
Vieira, J., Martelli, E. C., Camargo, M. C. G. D., & Gandra, R. F. (2021). Ação antimicrobiana de micocinas produzidas por Wickerhamomyces anomalus: uma revisão. Brazilian Journal of Health Review, 4(3), 10019-10029. https://doi.org/10.34119/bjhrv4n3-036
Walker, G. M. (2011). Pichia anomala: Cell physiology and biotechnology relative to other yeasts. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 99(1), 25-34. https://doi.org/10.1007/s10482-010-9491-8
Walker, G. M., Mcleod, A. H., & Hodgson, V. J. (1995). Interactions between killer yeasts and pathogenic fungi. FEMS Microbiology Letters, 127(3), 213-222. https://doi.org/10.1016/0378-1097(95)00064-C
Weaver, A. C., Weaver, D. M., Adams, N., & Yiannikouris, A. (2021). Co-occurrence of 35 mycotoxins: A seven-year survey of corn grain and corn silage in the united states. Toxins, 13(8), 516. https://doi.org/10.3390/toxins13080516
Yap, N. A., De Barros Lopes, M., Langridge, P., & Henschke, P. A. (2000). The incidence of killer activity of non-Saccharomyces yeasts towards indigenous yeast species of grape must: Potential application in wine fermentation. Journal of Applied Microbiology, 89(3), 381-389. https://doi.org/10.1046/j.1365-2672.2000.01124.x
Zhu, F., Du, B., Bian, Z., & Xu, B. (2015). β-Glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. Journal of Food Composition and Analysis, 41, 165-173. https://doi.org/10.1016/j.jfca.2015.01.019