Physicochemical composition, centesimal, and phytochemical profile of umbu seed flour (Spondias tuberosa Arruda)
DOI:
https://doi.org/10.5327/fst.00242%20Keywords:
Spondias tuberosa Arruda, food waste, food and nutrition security, recovery of agricultural wasteAbstract
This study aimed to investigate the nutritional potential of umbu (Spondias tuberosa Arruda) seed flours. This was an experimental study. The seeds of the umbu fruit were subjected to an oven-drying process in order to obtain the flour. Subsequently, the analysis of the centesimal composition, physicochemical, mineral, and fatty acid profile, microbiological investigation, and the screening of bioactive phytochemicals of the umbu seed flours in hydroethanolic extracts were carried out. A completely randomized design (CID) was used, with three replications, and the results were expressed as means followed by standard deviation. Analysis of variance (ANOVA) was carried out, and the Tukey’s test was applied at a 5% probability level. It was possible to obtain flour from umbu seeds. It was observed that they contained significant amounts of insoluble dietary fiber (80.9 ± 0.55a g.100-1), protein (6.95 ± 0.10a g.100-1), and lipids (5.54 ± 1.13a g.100-1). The minerals present included zinc (1.87 ± 0.05b mg.100 g-1), manganese (14.36 ± 0.34c mg.100 g-1), and calcium (104.79 ± 0.92c mg.100 g-1). The flours had high levels of oleic monounsaturated fatty acids (33.10 ± 0.13a g.100-1), linoleic polyunsaturated fatty acids (38.06 ± 0.06b g.100-1), and palmitic saturated fatty acids (19.1 ± 0.04b g.100-1), in addition to considerable levels of phenolic compounds (276.21 ± 14.01a mg.g-1 GAE) and flavonoids (891.09 ± 9.01ª mg.g-1 rutin), with satisfactory sanitary conditions for Escherichia coli, Salmonella, Bacillus cereus molds, and yeasts. This study suggests that umbu seed meals can be considered relevant sources of dietary fiber, minerals, and natural antioxidants.
Downloads
References
Aleixandre, A., & Miguel, M. (2016). Dietary fiber and blood pressure control. Food & Function, 7(4), 1864-1871. https://doi.org/10.1039/C5FO00950B
Association of Official Analytical Chemists (AOAC) (2010). Official methods of analysis (v. 12). AOAC.
Awad, M. A., de Jager, A., van der Plas, L. H. W., & van der Krol, A. R. (2001). Flavonoid and chlorogenic acid changes in skin of ‘Elstar’ and ‘Jonagold’ apples during development and ripening. Scientia Horticulturae, 90(1-2), 69-83. https://doi.org/10.1016/S0304-4238(00)00255-7
Axelrod, C., & Saps, M. (2018). The Role of Fiber in the Treatment of Functional Gastrointestinal Disorders in Children. Nutrients, 10(11), 1650. https://doi.org/10.3390/nu10111650
Barbosa-Martín, E., Chel-Guerrero, L., González-Mondragón, E., & Betancur-Ancona, D. (2016). Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food and Bioproducts Processing, 100(Part A), 457-463. https://doi.org/10.1016/j.fbp.2016.09.006
Blaine, J., Chonchol, M., & Levi, M. (2015). Renal Control of Calcium, Phosphate, and Magnesium Homeostasis. Clinical Journal of the American Society of Nephrology, 10(7), 1257-1272. https://doi.org/10.2215/CJN.09750913
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Cangussu, L. B., Fronza, P., Franca, A. S., & Oliveira, L. S. (2021). Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours. Foods, 10(11), 2597. https://doi.org/10.3390/foods10112597
Carvalho Gualberto, N., Santos de Oliveira, C., Pedreira Nogueira, J., Silva de Jesus, M., Caroline Santos Araujo, H., Rajan, M., Terezinha Santos Leite Neta, M., & Narain, N. (2021). Bioactive compounds and antioxidant activities in the agro-industrial residues of acerola (Malpighia emarginata L.), guava (Psidium guajava L.), genipap (Genipa americana L.) and umbu (Spondias tuberosa L.) fruits assisted by ultrasonic or shaker extraction. Food Research International, 147, 110538. https://doi.org/10.1016/J.FOODRES.2021.110538
de Lima, M. A. C., de Oliveira, V. R., & Silva, S. de M. (2018). Umbu—Spondias tuberosa. Exotic Fruits Reference Guide, 427-433. https://doi.org/10.1016/B978-0-12-803138-4.00057-5
de Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. H. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9-14. https://doi.org/10.1016/J.LWT.2013.02.002
de Moura Barbosa, H., Amaral, D., do Nascimento, J. N., Machado, D. C., de Sousa Araújo, T. A., de Albuquerque, U. P., Guedes da Silva Almeida, J. R., Rolim, L. A., Lopes, N. P., Gomes, D. A., & Lira, E. C. (2018). Spondias tuberosa inner bark extract exert antidiabetic effects in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 227, 248-257. https://doi.org/10.1016/J.JEP.2018.08.038
Dias, J. L., Mazzutti, S., de Souza, J. A. L., Ferreira, S. R. S., Soares, L. A. L., Stragevitch, L., & Danielski, L. (2019). Extraction of umbu (Spondias tuberosa) seed oil using CO2, ultrasound and conventional methods: Evaluations of composition profiles and antioxidant activities. Journal of Supercritical Fluids, 145, 10-18. https://doi.org/10.1016/J.SUPFLU.2018.11.011
Erikson, K., & Aschner, M. (2019). Manganase: Its role is disease and health. In P. L. Carver (ed.). Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic (p. 253-263). De Gruyter. https://doi.org/10.1515/9783110527872
Gonçalves, L. D. dos A., & Magalhães, G. L. (2018). Hambúrguer bovino com substituição da gordura por farinha da casca de maracujá. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(4), 489-494.
Gouvêa, R. F., Ribeiro, L. O., Souza, É. F., Penha, E. M., Matta, V. M., & Freitas, S. P. (2017). Effect of enzymatic treatment on the rheological behavior and vitamin C content of Spondias tuberosa (umbu) pulp. Journal of Food Science and Technology, 54(7), 2176-2180. https://doi.org/10.1007/s13197-017-2630-8
Guimarães, A. L., de Oliveira, A. P., G. dos Santos Silva, S. F., Bezerra, G. S., Sousa, I., da Silva Almeida, J. R. G., de Sousa Rodrigues, J., de Alencar Filho, J. M. T., & da Cruz Araújo, E. C. (2018). Gas chromatographymass spectrometry (GC-MS) analysis of the constituents of the fixed oils obtained from the barks, leaves and stems of Spondias tuberosa Arruda (Anacardiaceae). Journal of Medicinal Plants Research, 12(8), 89-95. https://doi.org/10.5897/JMPR2018.6555
Harding, J. E., Cormack, B. E., Alexander, T., Alsweiler, J. M., & Bloomfield, F. H. (2017). Advances in nutrition of the newborn infant. Lancet, 389(10079), 1660-1668. https://doi.org/10.1016/S0140-6736(17)30552-4
Hodge, J. (2016). Hidden hunger: approaches to tackling micronutrient deficiencies. International Food Policy Research Institute.
Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese Is Essential for Neuronal Health. Annual Review of Nutrition, 35(1), 71-108. https://doi.org/10.1146/annurev-nutr-071714-034419
Institute of Medicine (IOM) (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy Press.
Lima, J. R. (2008). Caracterização físico-química e sensorial de hambúrguer vegetal elaborado à base de caju. Ciência e Agrotecnologia, 32(1), 191-195. https://doi.org/10.1590/S1413-70542008000100028
Louzada, M. L. da C., Martins, A. P. B., Canella, D. S., Baraldi, L. G., Levy, R. B., Claro, R. M., Moubarac, J.-C., Cannon, G., & Monteiro, C. A. (2015). Ultra-processed foods and the nutritional dietary profile in Brazil. Revista de Saúde Pública, 49, 38. https://doi.org/10.1590/S0034-8910.2015049006132
Lupton, J., Brooks, J., Butte, N., Caballero, B., Flatt, J., & Fried, S. (2002). Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fats, Fatty Acids, Cholesterol, Protein, and Amino Acids. National Academy Press.
Marangoni, F., Agostoni, C., Borghi, C., Catapano, A. L., Cena, H., Ghiselli, A., La Vecchia, C., Lercker, G., Manzato, E., Pirillo, A., Riccardi, G., Risé, P., Visioli, F., & Poli, A. (2020). Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis, 292, 90-98. https://doi.org/10.1016/j.atherosclerosis.2019.11.018
Mazzola, L. F., Carvalho, C. G. P., Mandarino, J. M. G., Carvalho, L. M., & Carvalho, H. W. L. (2018). Teores de ácido oleico e linoleico de aquênios de girassol cultivados na Região Nordeste. XIII Jornada Acadêmica da Embrapa Soja. Embrapa Soja.
Morais, D. R., Rotta, E. M., Sargi, S. C., Bonafe, E. G., Suzuki, R. M., Souza, N. E., Matsushita, M., & Visentainer, J. V. (2016). Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. Journal of the Brazilian Chemical Society, 28(2), 308-318. https://doi.org/10.5935/0103-5053.20160178
O’Shea, N., Ktenioudaki, A., Smyth, T. P., McLoughlin, P., Doran, L., Auty, M. A. E., Arendt, E., & Gallagher, E. (2015). Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. Journal of Food Engineering, 153, 89-95. https://doi.org/10.1016/J.JFOODENG.2014.12.014
Précoma, D. B., Oliveira, G. M. M. de, Simão, A. F., Dutra, O. P., Coelho-Filho, O. R., Izar, M. C. de O., Póvoa, R. M. dos S., Giuliano, I. de C. B., Alencar Filho, A. C. de, Machado, C. A., Scherr, C., Fonseca, F. A. H., Santos Filho, R. D. dos, Carvalho, T. de, Avezum Júnior, A., Esporcatte, R., Nascimento, B. R., Brasil, D. de P., Soares, G. P., … & Mourilhe-Rocha, R. (2019). Updated Cardiovascular Prevention Guideline of the Brazilian Society of Cardiology. Arquivos Brasileiros de Cardiologia, 113(4), 787-891. https://doi.org/10.5935/abc.20190204
Rai, S., Kaur, A., & Singh, B. (2014). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology, 51(4), 785-789. https://doi.org/10.1007/s13197-011-0547-1
Ramachandraiah, K. (2021). Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. Sustainability, 13(2), 938. https://doi.org/10.3390/su13020938
Ribeiro, L. de O., Viana, E. de S., Godoy, R. L. de O., Freitas, S. C. de, Freitas, S. P., & Matta, V. M. (2019). Nutrients and bioactive compounds of pulp, peel and seed from umbu fruit. Ciência Rural, 49(4), e20180806. https://doi.org/10.1590/0103-8478cr20180806
Santos, M. D., & Blatt, C. T. T. (1998). Teor de flavonóides e fenóis totais em folhas de Pyrostegia venusta Miers. de mata e de cerrado. Revista Brasileira de Botânica, 21(2), 135-140. https://doi.org/10.1590/S0100-84041998000200004
Santos, P. A., de Rezende, L. C., Oliveira, J. C. S. de, David, J. M., & David, J. P. (2019). Chemical Study, Antioxidant and Cytotoxic Activities of Oil Seeds of Spondias tuberosa (Anacardiaceae). International Journal of Fruit Science, 19(3), 246-257. https://doi.org/10.1080/15538362.2018.1502721
Senes-Lopes, T. F., López, J. A., do Amaral, V. S., Brandão-Neto, J., de Rezende, A. A., da Luz, J. R. D., Guterres, Z. da R., & Almeida, M. das G. (2018). Genotoxicity of Turnera subulata and Spondias mombin × Spondias tuberosa Extracts from Brazilian Caatinga Biome. Journal of Medicinal Food, 21(4), 372-379. https://doi.org/10.1089/jmf.2017.0041
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2-3), 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X
Soliman, G. A. (2019). Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients, 11(5), 1155. https://doi.org/10.3390/nu11051155
Sousa, E. P., Mori, E., & Lemos, D. M. (2012). Análise química da formulação de hambúrguer enriquecido com fibras da casca de melancia desidratadas. Available at: http://revista.gvaa.com.br
Stone, M., Martyn, L., & Weaver, C. (2016). Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients, 8(7), 444. https://doi.org/10.3390/nu8070444
Takikawa, M., Inoue, S., Horio, F., & Tsuda, T. (2010). Dietary Anthocyanin-Rich Bilberry Extract Ameliorates Hyperglycemia and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic Mice. Journal of Nutrition, 140(3), 527-533. https://doi.org/10.3945/jn.109.118216
Wang, Z., Pang, W., He, C., Li, Y., Jiang, Y., & Guo, C. (2017). Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM 2.5)-Induced Cardiovascular Dysfunction. Journal of Agricultural and Food Chemistry, 65(1), 87-94. https://doi.org/10.1021/acs.jafc.6b04603
Weickert, M. O., & Pfeiffer, A. F. (2018). Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. Journal of Nutrition, 148(1), 7-12. https://doi.org/10.1093/jn/nxx008
Wettasinghe, M., & Shahidi, F. (1999). Evening Primrose Meal: A Source of Natural Antioxidants and Scavenger of Hydrogen Peroxide and Oxygen-Derived Free Radicals. Journal of Agricultural and Food Chemistry, 47(5), 1801-1812. https://doi.org/10.1021/jf9810416
Zeraik, M. L., Queiroz, E. F., Marcourt, L., Ciclet, O., Castro-Gamboa, I., Silva, D. H. S., Cuendet, M., da Silva Bolzani, V., & Wolfender, J. L. (2016). Antioxidants, quinone reductase inducers and acetylcholinesterase inhibitors from Spondias tuberosa fruits. Journal of Functional Foods, 21, 396-405. https://doi.org/10.1016/J.JFF.2015.12.009
Zhao, B., & Hall, C. A. (2008). Composition and antioxidant activity of raisin extracts obtained from various solvents. Food Chemistry, 108(2), 511-518. https://doi.org/10.1016/j.foodchem.2007.11.003