Nanoencapsulation of natural products and their role in the preservation and control of contaminations in the food industry
DOI:
https://doi.org/10.5327/fst.00222%20Keywords:
antimicrobial resistance, natural products, nanoemulsions, essential oils, food industryAbstract
Microbial resistance is a problem of high notoriety and importance, being investigated in several scientific areas. Directly correlated to the abuse of macrolides in the pandemic context, the difficulty in eliminating resistant microorganisms and the control of bacterial contamination in an industrial food environment have been increasingly worrying nowadays. The present study demonstrates hypotheses of microbial control using the encapsulation of essential oils and products of natural origin through the technology used in nanocomposites. The aid in the prevention and control of microorganisms with high antimicrobial resistance factors in food industry environments can be seen. Furthermore, new approaches and themes applied in the denaturation of pathogenic biofilms and nanoencapsulation and the use of common metals and transition metals are highlighted.
Downloads
References
Abrantes, J. A., & Nogueira, J. M. R. (2021). Resistência bacteriana aos antimicrobianos: uma revisão das principais espécies envolvidas em processos infecciosos. Revista Brasileira de Análises Clínicas, 219-223.
Alfadul, S. M., & Elneshwy, E. A. (2010). Use of nanotechnology in food processing, packaging, and safety–review. American Journal of Food, Agriculture, Nutrition and Development, 10(6). https://doi.org/10.4314/ajfand.v10i6.58068
Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2017). Crataeva Nurvala Nanoparticles Inhibit Virulence Factors and Biofilm Formation in Clinical Isolates of Pseudomonas Aeruginosa. Journal of Basic Microbiology, 57(3), 193–203. https://doi.org/10.1002/jobm.201600175
Al-Shabib, N. A., Husain, F. M., Ahmed, F., Khan, R. A., Ahmad, I., Alsharaeh, E., Khan, M. S., Hussain, A., Rehman, M. T., & Yusuf, M. (2016). Biogenic Synthesis of Zinc Oxide Nanostructures from Nigella Sativa Seed: Prospective Role as Food Packaging Material Inhibiting Broad-Spectrum Quorum Sensing and Biofilm. Science Reports, 6, 36761. https://doi.org/10.1038/srep36761
Anvar, A. A., Ahari, H., & Ataee, M. (2021). Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Frontiers in Microbiology, 12, 690706. https://doi.org/10.3389/fmicb.2021.690706
Asfour, H. Z. (2018). Ultrastructure Anti-Quorum Sensing Natural Compounds. Journal of Microscopy, 6(1), 1-10. https://doi.org/10.4103%2FJMAU.JMAU_10_18
Attaran, S. A., Hassan, A., & Wahit, M. U. (2017). Materials for Food Packaging Applications Based on Bio-Based Polymer Nanocomposites: A Review. Journal of Thermoplastic Composite Materials, 30, 143-173. https://doi.org/10.1177/0892705715588801
Bai, C., Ke, Y., Hu, X., Xing, L., Zhao, Y., Lu, S., & Lin, Y. (2020). Preparation and Properties of Amphiphilic Hydrophobically Associative Polymer/Montmorillonite Nanocomposites. The Royal Society Open Science, 7(5), 200199. https://doi.org/10.1098/rsos.200199
Balaban, N. Q., Gerdes, K., Lewis, K., & McKinney, J. D. (2013). A Problem of Persistence: Still More Questions than Answers? Nature Reviews Microbiology, 11(8), 587-591. https://doi.org/10.1038/nrmicro3076
Banwo, K., Alao, M. B., & Sanni, A. I. (2020). Antioxidant and Antidiarrhoeal Activities of Methanolic Extracts of Stem Bark of Parkia Biglobosa and Leaves of Parquetina Nigrescens. Journal of Herbs, Spices & Medicinal Plants, 26(1), 14-29. https://doi.org/10.1080/10496475.2019.1663770
Banwo, K., Oduola, S., Alao, M., & Sanni, A. (2022). Hepatoprotective Potentials of Methanolic Extracts of Roselle and Beetroots against Carbon Tetrachloride and Escherichia Coli Induced Stress in Wistar Rats. Egyptian Journal of Basic and Applied Sciences, 9(1), 423-440. https://doi.org/10.1080/2314808X.2022.2098461
Banwo, K., Olojede, A. O., Adesulu-Dahunsi, A. T., Verma, D. K., Thakur, M., Tripathy, S., Singh, S., Patel, A. R., Gupta, A. K., & Aguilar, C. N. (2021). Functional Importance of Bioactive Compounds of Foods with Potential Health Benefits: A Review on Recent Trends. Food Bioscience, 43, 101320. https://doi.org/10.1016/j.fbio.2021.101320
Basavegowda, N., Patra, J. K., Baek, K.-H. (2020). Essential Oils and Mono/Bi/Tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules, 25(5), 1058. https://doi.org/10.3390/molecules25051058
Bigger, J. (1944). Treatment of Staphyloeoeeal Infections with Penicillin by Intermittent Sterilisation. Lancet, 244(6320), 497-500. https://doi.org/10.1016/s0140-6736%2800%2974210-3
Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., & Rai, M. K. (2009). Fabrication of Silver Nanoparticles by Phoma Glomerata and Its Combined Effect against Escherichia Coli, Pseudomonas Aeruginosa and Staphylococcus Aureus. Letters in Applied Microbiology, 48(2), 173-179. https://doi.org/10.1111/j.1472-765x.2008.02510.x
Bland, R., Brown, S. R. B., Waite‐Cusic, J., Kovacevic, J. (2022). Probing Antimicrobial Resistance and Sanitizer Tolerance Themes and Their Implications for the Food Industry through the Listeria Monocytogenes Lens. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1777-1802. https://doi.org/10.1111/1541-4337.12910
Blassel, L., Zhukova, A., Villabona-Arenas, C. J., Atkins, K. E., Hué, S., & Gascuel, O. (2021). Drug Resistance Mutations in HIV: New Bioinformatics Approaches and Challenges. Current Opinion Virology, 51, 56-64. https://doi.org/10.1016/j.coviro.2021.09.009
Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between Resistance, Tolerance and Persistence to Antibiotic Treatment. Nature Reviews in Microbiology, 14, 320-330. https://doi.org/10.1038/nrmicro.2016.34
Brooks, J. D., & Flint, S. H. (2008). Biofilms in the Food Industry: Problems and Potential Solutions. Journal of Food Science Technology, 43(12), 2163-2176.
Bumbudsanpharoke, N., Choi, J., & Ko, S. (2015). Applications of Nanomaterials in Food Packaging. Journal of Nanoscience and Nanotechnology, 15(9), 6357-6372. https://doi.org/10.1166/jnn.2015.10847
Campista-León, S., Rivera-Serrano, B. V., Garcia-Guerrero, J. T., Peinado-Guevara, L. I. (2021). Phylogenetic Characterization and Multidrug Resistance of Bacteria Isolated from Seafood Cocktails. Archives in Microbiology, 203(6), 3317-3330. https://doi.org/10.1007/s00203-021-02319-1
Casey, P. (2006). Nanoparticle Technologies and Applications. In R. H. J. Hannink & A. J. Hill (Eds.), Nanostructure control of materials (pp. 1-31). Elsevier.
Cejudo-Bastante, M. J., Cejudo-Bastante, C., Cran, M. J., Heredia, F. J., & Bigger, S.W. (2020). Optical, Structural, Mechanical and Thermal Characterization of Antioxidant Ethylene Vinyl Alcohol Copolymer Films Containing Betalain-Rich Beetroot. Food Packaging and Shelf Life, 24, 100502. https://doi.org/10.1016/j.fpsl.2020.100502
Centers for Disease Control and Prevention (2019). Prevention Antibiotic Resistance Threats in the United States. US Department of Health and Human Services.
Cerrada, M. L., Serrano, C., Sánchez‐Chaves, M., Fernández‐García, M., Fernández‐Martín, F., de Andres, A., Rioboo, R. J. J., Kubacka, A., Ferrer, M., & Fernández‐García, M. (2008). Self‐sterilized EVOH‐TiO2 Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 18(13), 1949-1960. https://doi.org/10.1002/adfm.200701068
Chang, Z., Yadav, V., Lee, S. C., & Heitman, J. (2019). Epigenetic Mechanisms of Drug Resistance in Fungi. Fungal Genetics and Biology, 132, 103253. https://doi.org/10.1016%2Fj.fgb.2019.103253
Chaudhari, A. A., Jasper, S. L., Dosunmu, E., Miller, M. E., Arnold, R. D., Singh, S. R., & Pillai, S. (2015). Novel Pegylated Silver Coated Carbon Nanotubes Kill Salmonella but They Are Non-Toxic to Eukaryotic Cells. Journal of Nanobiotechnology, 13, 23. https://doi.org/10.1186/s12951-015-0085-5
Chiang, I.-T., Chen, W.-T., Tseng, C.-W., Chen, Y.-C., Kuo, Y.-C., Chen, B.-J., Weng, M.-C., Lin, H.-J., & Wang, W.-S. (2017). Hyperforin Inhibits Cell Growth by Inducing Intrinsic and Extrinsic Apoptotic Pathways in Hepatocellular Carcinoma Cells. Anticancer Research, 37(1), 161-167. https://doi.org/10.21873/anticanres.11301
Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26-40. https://doi.org/10.1007/s00239-019-09914-3
Colombo, A. L., Almeida Júnior, J. N., & Guinea, J. (2017). Emerging Multidrug-Resistant Candida Species. Current Opinion in Infectious Diseases, 30(6), 528-538. https://doi.org/10.1097/qco.0000000000000411
Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., Scrocco, C., Sabbatini, L., Contò, F., Del Nobile, M. A. (2013). A Novel Preservation Technique Applied to Fiordilatte Cheese. Innovative Food Science & Emerging Technologies, 19, 158-165. https://doi.org/10.1016/j.ifset.2013.04.010
Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of Antifungal Drug Resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752. https://doi.org/10.1101%2Fcshperspect.a019752
Cox, G., & Wright, G. D. (2013). Intrinsic Antibiotic Resistance: Mechanisms, Origins, Challenges and Solutions. International Journal of Medical Microbiology, 303(6-7), 287-292. https://doi.org/10.1016/j.ijmm.2013.02.009
D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., & Debruyne, R. (2011). Antibiotic Resistance Is Ancient. Nature, 477(7365), 457-461. https://doi.org/10.1038/nature10388
Dancer, S. J., Shears, P., & Platt, D. (1997). Isolation and Characterization of Coliforms from Glacial Ice and Water in Canada’s High Arctic. Journal of Applied Microbiology, 82(5), 597-609. https://doi.org/10.1111/j.1365-2672.1997.tb03590.x
de Abreu, D. A. P., Cruz, J. M., Angulo, I., Losada, P. P. (2010). Mass Transport Studies of Different Additives in Polyamide and Exfoliated Nanocomposite Polyamide Films for Food Industry. Packaging Technology and Science, 23(2), 59-68. https://doi.org/10.1002/pts.879
de la Fuente-Núñez, C., Reffuveille, F., Fernández, L., & Hancock, R. E. W. (2013). Bacterial Biofilm Development as a Multicellular Adaptation: Antibiotic Resistance and New Therapeutic Strategies. Current Opinion in Microbiology, 16(5), 580-589. https://doi.org/10.1016/j.mib.2013.06.013
Deshmukh, R. K., & Gaikwad, K. K. (2022). Natural Antimicrobial and Antioxidant Compounds for Active Food Packaging Applications. Biomass Conversion and Biorefinery, 1-22. https://doi.org/10.1007/s13399-022-02623-w
Díaz‐Visurraga, J., Meléndrez, M. F., Garcia, A., Paulraj, M., & Cárdenas, G. (2010). Semitransparent Chitosan‐TiO2 Nanotubes Composite Film for Food Package Applications. Journal of Applied Polymer Science, 116(6), 3503-3515. https://doi.org/10.1002/app.31881
Duncan, T. V. (2011). Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. Journal of Colloid and Interface Science, 363, 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
Emamhadi, M. A., Sarafraz, M., Akbari, M., Fakhri, Y., Linh, N. T. T., & Khaneghah, A. M. (2020). Nanomaterials for Food Packaging Applications: A Systematic Review. Food and Chemical Toxicology, 146, 111825. https://doi.org/10.1016/j.fct.2020.111825
Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of Nanocomposite Packaging Containing Ag and ZnO on Shelf Life of Fresh Orange Juice. Innovative Food Science & Emerging Technologies, 11(4), 742-748. https://doi.org/10.1016/j.ifset.2010.06.003
Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 5, 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
Faille, C., Tauveron, G., Le Gentil-Lelièvre, C., & Slomianny, C. (2007). Occurrence of Bacillus Cereus Spores with a Damaged Exosporium: Consequences on the Spore Adhesion on Surfaces of Food Processing Lines. Journal of Food Protection, 70(10), 2346-2353. https://doi.org/10.4315/0362-028x-70.10.2346
Frost, I., Van Boeckel, T. P., Pires, J., Craig, J., & Laxminarayan, R. (2019). Global Geographic Trends in Antimicrobial Resistance: The Role of International Travel. Journal of Travel Medicine, 26(8), taz036. https://doi.org/10.1093/jtm/taz036
Fujita, A., Sarkar, D., Genovese, M. I., & Shetty, K. (2017). Improving Anti-Hyperglycemic and Anti-Hypertensive Properties of Camu-Camu (Myriciaria Dubia Mc. Vaugh) Using Lactic Acid Bacterial Fermentation. Process Biochemistry, 59(Part B), 133-140. https://doi.org/10.1016/j.procbio.2017.05.017
Galie, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J. & Lombó, F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Frontiers in Microbiology, 9, 898. https://doi.org/10.3389/fmicb.2018.00898
Girdthep, S., Worajittiphon, P., Molloy, R., Lumyong, S., Leejarkpai, T., & Punyodom, W. (2014). Biodegradable Nanocomposite Blown Films Based on Poly (Lactic Acid) Containing Silver-Loaded Kaolinite: A Route to Controlling Moisture Barrier Property and Silver Ion Release with a Prediction of Extended Shelf Life of Dried Longan. Polymer, 55(26), 6776-6788.
Handwerger, S., & Tomasz, A. (1985). Antibiotic Tolerance among Clinical Isolates of Bacteria. Reviews of Infectious Diseases, 7(3), 368-386. https://doi.org/10.1093/clinids/7.3.368
Hay, A. J., Wolstenholme, A. J., Skehel, J. J., & Smith, M. H. (1985). The molecular basis of the specific anti‐influenza action of amantadine. EMBO Journal, 4, 3021-3024. https://doi.org/10.1002/j.1460-2075.1985.tb04038.x
Hemeg, H. A. (2017). Nanomaterials for Alternative Antibacterial Therapy. International Journal of Nanomedicine, 12, 8211-8225. https://doi.org/10.2147%2FIJN.S132163
Herman, A., & Herman, A. P. (2014). Nanoparticles as Antimicrobial Agents: Their Toxicity and Mechanisms of Action. Journal of Nanoscience and Nanotechnology, 14(1), 946-957. https://doi.org/10.1166/jnn.2014.9054
Horne, D., & Tomasz, A. (1977). Tolerant Response of Streptococcus Sanguis to Beta-Lactams and Other Cell Wall Inhibitors. Antimicrobial Agents Chemotherapy, 11(5), 888-896. https://doi.org/10.1128%2Faac.11.5.888
Horue, M., Cacicedo, M. L., Fernandez, M. A., Rodenak-Kladniew, B., Sánchez, R. M. T., & Castro, G. R. (2020). Antimicrobial Activities of Bacterial Cellulose–Silver Montmorillonite Nanocomposites for Wound Healing. Materials Science and Engineering: C, 116, 111152. https://doi.org/10.1016/j.msec.2020.111152
Hossain, F., Follett, P., Salmieri, S., Vu, K. D., Fraschini, C., & Lacroix, M. (2019). Antifungal Activities of Combined Treatments of Irradiation and Essential Oils (EOs) Encapsulated Chitosan Nanocomposite Films in in Vitro and in Situ Conditions. International Journal of Food Microbiology, 295, 33-40. https://doi.org/10.1016/j.ijfoodmicro.2019.02.009
Hu, C., Wang, L., Lin, Y., Liang, H., Zhou, S., Zheng, F., Feng, X., Rui, Y., & Shao, L. (2019). Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Advanced Healthcare Materials, 8(24), e1901301. https://doi.org/10.1002/adhm.201901301
Huang, J.-Y., Li, X., & Zhou, W. (2015). Safety Assessment of Nanocomposite for Food Packaging Application. Trends in Food Science & Technology, 45(2), 187-199. https://doi.org/10.1016/j.tifs.2015.07.002
Hussain, M., Galvin, H. D., Haw, T. Y., Nutsford, A. N., Husain, M. (2017). Drug Resistance in Influenza A Virus: The Epidemiology and Management. Infectious and Drug Resistance, 10, 121-134. https://doi.org/10.2147/idr.s105473
Jin, T., Liu, L., Zhang, H., & Hicks, K. (2009). Antimicrobial Activity of Nisin Incorporated in Pectin and Polylactic Acid Composite Films against Listeria Monocytogenes. International Journal of Food Science and Technology, 44(2), 322-329. https://doi.org/10.1111/j.1365-2621.2008.01719.x
Ju, A., & Song, K. B. (2019). Development of Teff Starch Films Containing Camu-Camu (Myrciaria Dubia Mc. Vaugh) Extract as an Antioxidant Packaging Material. Industrial Crops and Products, 141, 111737. https://doi.org/10.1016/j.indcrop.2019.111737
Jubeh, B., Breijyeh, Z., & Karaman, R. (2020). Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules, 25(12), 2888. https://doi.org/10.3390%2Fmolecules25122888
Kang, S., Pinault, M., Pfefferle, L. D., Elimelech, M. (2007). Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir, 23(17), 8670-8673. https://doi.org/10.1021/la701067r
Kariyawasam, R. M., Julien, D. A., Jelinski, D. C., Larose, S. L., Rennert-May, E., Conly, J. M., Dingle, T. C., Chen, J. Z., Tyrrell, G. J., Ronksley, P. E., & Barkema, H. W. (2022). Antimicrobial Resistance (AMR) in COVID-19 Patients: A Systematic Review and Meta-Analysis (November 2019–June 2021). Antimicrobial Resistance and Infection Control, 11(1), 45. https://doi.org/10.1186/s13756-022-01085-z
Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends in Microbiology, 28(8), 668-681. https://doi.org/10.1016/j.tim.2020.03.016
Kausar, S., Said Khan, F., Ishaq Mujeeb Ur Rehman, M., Akram, M., Riaz, M., Rasool, G., Hamid Khan, A., Saleem, I., Shamim, S., & Malik, A. (2021). A Review: Mechanism of Action of Antiviral Drugs. International Journal of Immunopathology and Pharmacology, 35, 20587384211002620. https://doi.org/10.1177%2F20587384211002621
Kester, J. C., & Fortune, S. M. (2014). Persisters and beyond: Mechanisms of Phenotypic Drug Resistance and Drug Tolerance in Bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49(2), 91-101. https://doi.org/10.3109/10409238.2013.869543
Khan, A., Miller, W. R., & Arias, C. A. (2018). Mechanisms of Antimicrobial Resistance among Hospital-Associated Pathogens. Experts Review of Anti-Infective Therapy, 16(4), 269-287. https://doi.org/10.1080/14787210.2018.1456919
Khatibi, S. A., Hamidi, S., & Siahi-Shadbad, M. R. (2022). Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Critical Reviews in Analytical Chemistry, 52(2), 327-342. https://doi.org/10.1080/10408347.2020.1798211
Kotelnikova, N., Vainio, U., Pirkkalainen, K., & Serimaa, R. (2007). Novel Approaches to Metallization of Cellulose by Reduction of Cellulose‐incorporated Copper and Nickel Ions. Macromolecular Symposia, 254(1), 74-79. https://doi.org/10.1002/masy.200790098
Kumar, P., Tanwar, R., Gupta, V., Upadhyay, A., Kumar, A., & Gaikwad, K. K. (2021). Pineapple Peel Extract Incorporated Poly (Vinyl Alcohol)-Corn Starch Film for Active Food Packaging: Preparation, Characterisation and Antioxidant Activity. International Journal of Biological Macromolecules, 187, 223-231. https://doi.org/10.1016/j.ijbiomac.2021.07.136
Lampejo, T. (2020). Influenza and Antiviral Resistance: An Overview. European Journal of Clinical Microbiology & Infectious Diseases, 39(7), 1201-1208. https://doi.org/10.1007/s10096-020-03840-9
Lau, A. K.-T., & Hui, D. (2002). The Revolutionary Creation of New Advanced Materials—Carbon Nanotube Composites. Composites Part B: Engineering, 33(4), 263-277. https://doi.org/10.1016/S1359-8368(02)00012-4
Lehtinen, S., Blanquart, F., Lipsitch, M., Fraser, C., & Maela Pneumococcal Collaboration (2019). On the Evolutionary Ecology of Multidrug Resistance in Bacteria. PLoS Pathogens, 15(5), e1007763. https://doi.org/10.1371/journal.ppat.1007763
Li, J.-H., Miao, J., Wu, J.-L., Chen, S.-F., & Zhang, Q.-Q. (2014). Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocolloids, 37, 166-173. https://doi.org/10.1016/j.foodhyd.2013.10.015
Li, W.-R., Xie, X.-B., Shi, Q.-S., Duan, S.-S., Ouyang, Y.-S., & Chen, Y.-B. (2011). Antibacterial Effect of Silver Nanoparticles on Staphylococcus Aureus. Biometals, 24(1), 135-141. https://doi.org/10.1007/s10534-010-9381-6
Liao, Y., Zhang, R., & Qian, J. (2019). Printed Electronics Based on Inorganic Conductive Nanomaterials and Their Applications in Intelligent Food Packaging. RSC Advances, 9(50), 29154-29172. https://doi.org/10.1039/C9RA05954G
Lipsitch, M., & Samore, M. H. (2002). Antimicrobial Use and Antimicrobial Resistance: A Population Perspective. Emerging Infectious Diseases, 8(4), 347-354. https://doi.org/10.3201/eid0804.010312
Llorens, A., Lloret, E., Picouet, P., & Fernandez, A. (2012). Study of the Antifungal Potential of Novel Cellulose/Copper Composites as Absorbent Materials for Fruit Juices. International Journal of Food Microbiology, 158(2), 113-119. https://doi.org/10.1016/j.ijfoodmicro.2012.07.004
Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P. K.-H., Chiu, J.-F., Che, C.-M. (2007). Silver Nanoparticles: Partial Oxidation and Antibacterial Activities. Journal of Biological Inorganic Chemistry, 12, 527-534. https://doi.org/10.1007/s00775-007-0208-z
Luz, C. F., van Niekerk, J. M., Keizer, J., Beerlage-de Jong, N., Braakman-Jansen, L. M. A., Stein, A., Sinha, B., van Gemert-Pijnen, J., & Glasner, C. (2022). Mapping Twenty Years of Antimicrobial Resistance Research Trends. Artificial Intelligence in Medicine, 123, 102216. https://doi.org/10.1016/j.artmed.2021.102216
Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., & Kamble, S. P. (2012). Effect of Biologically Synthesised Silver Nanoparticles on Staphylococcus Aureus Biofilm Quenching and Prevention of Biofilm Formation. IET Nanobiotechnology, 6(3), 110-114. https://doi.org/10.1049/iet-nbt.2011.0061
McCarlie, S., Boucher, C. E., & Bragg, R. R. (2020). Molecular Basis of Bacterial Disinfectant Resistance. Drug Resistance Updates, 48, 100672. https://doi.org/10.1016/j.drup.2019.100672
McEwen, S. A., & Collignon, P. (2018). Antimicrobial Resistance: A One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/microbiolspec.arba-0009-2017
Mihindukulasuriya, S. D. F., & Lim, L.-T. (2014). Nanotechnology Development in Food Packaging: A Review. Trends in Food Science & Technology, 40(2), 149-167. https://doi.org/10.1016/j.tifs.2014.09.009
Miller, K. P., Wang, L., Chen, Y.-P., Pellechia, P. J., Benicewicz, B. C., & Decho, A. W. (2015). Engineering Nanoparticles to Silence Bacterial Communication. Frontiers in Microbiology, 6, 189. https://doi.org/10.3389/fmicb.2015.00189
Mir, S. A., Dar, B. N., Wani, A. A., Shah, M. A. (2018). Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends in Food Science & Technology, 80, 141-154.
Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619-635. https://doi.org/10.1016/j.giec.2020.06.004
Mühlberg, E., Umstätter, F., Kleist, C., Domhan, C., Mier, W., & Uhl, P. (2020). Renaissance of Vancomycin: Approaches for Breaking Antibiotic Resistance in Multidrug-Resistant Bacteria. Canadian Journal of Microbiology, 66(1), 11-16. https://doi.org/10.1139/cjm-2019-0309
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., & Wool, E. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
Mwangi, J., Hao, X., Lai, R., & Zhang, Z.-Y. (2019). Antimicrobial Peptides: New Hope in the War against Multidrug Resistance. Zoology Research, 40(6), 488-505. https://doi.org/10.24272/j.issn.2095-8137.2019.062
Naik, K., & Kowshik, M. (2014). Anti‐quorum Sensing Activity of AgCl‐TiO2 Nanoparticles with Potential Use as Active Food Packaging Material. Journal of Applied Microbiology, 117(4), 972-983. https://doi.org/10.1111/jam.12589
Nisa, I., Haroon, M., Driessen, A., Nijland, J., Rahman, H., Yasin, N., Hussain, M., Khan, T. A., Ali, A., Khan, S. A., & Qasim, M. (2022). Antimicrobial Resistance of Shigella Flexneri in Pakistani Pediatric Population Reveals an Increased Trend of Third-Generation Cephalosporin Resistance. Currents Microbiology, 79(4), 118. https://doi.org/10.1007/s00284-022-02805-9
Oroian, M., & Escriche, I. (2015). Antioxidants: Characterisation, Natural Sources, Extraction and Analysis. Food Research International, 74, 10-36. https://doi.org/10.1016/j.foodres.2015.04.018
Otsuka, Y. (2020). Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chemical and Pharmaceutical Bulletin, 68(3), 182-190. https://doi.org/10.1248/cpb.c19-00842
Pagnossa, J. P., Rocchetti, G., Abreu Martins, H. H., Bezerra, J. D. P., Batiha, G. E. S., El-Masry, E. A., Cocconcelli, P. S., Santos, C., Lucini, L., & Piccoli, R. H. (2021). Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Research International, 149, 110658. https://doi.org/10.1016/j.foodres.2021.110658
Pagnossa, J. P., Rocchetti, G., Bezerra, J. D. P., Batiha, G. E. S., El-Masry, E. A., Mahmoud, M. H., Alsayegh, A. A., Mashraqi, A., Cocconcelli, P. S., Santos, C., Lucini, L., & Hilsdorf Piccoli, R. (2022). Untargeted metabolomics approach of cross-adaptation in Salmonella enterica induced by major compounds of essential oils. Frontiers in Microbiology, 13, 769110. https://doi.org/10.3389%2Ffmicb.2022.769110
Pereira, R., dos Santos Fontenelle, R. O., de Brito, E.H.S., de Morais, S. M. (2021). Biofilm of Candida Albicans: Formation, Regulation and Resistance. Journal of Applied Microbiology, 131(1), 11-22. https://doi.org/10.1111/jam.14949
Pradeep, H., Bindu, M., Suresh, S., Thadathil, A., & Periyat, P. (2022). Recent Trends and Advances in Polyindole-Based Nanocomposites as Potential Antimicrobial Agents: A Mini Review. RSC Advances, 12(13), 8211-8227. https://doi.org/10.1039/D1RA09317G
Prateeksha, Singh, B. R., Shoeb, M., Sharma, S., Naqvi, A. H., Gupta, V. K., & Singh, B. N. (2017). Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas Aeruginosa Quorum Sensing and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 7, 93. https://doi.org/10.3389/fcimb.2017.00093
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathogens and Global Health, 109(7), 309-318. https://doi.org/10.1179%2F2047773215Y.0000000030
Priyamvada, P., Debroy, R., Anbarasu, A., & Ramaiah, S. (2022). A Comprehensive Review on Genomics, Systems Biology and Structural Biology Approaches for Combating Antimicrobial Resistance in ESKAPE Pathogens: Computational Tools and Recent Advancements. World Journal of Microbiology and Biotechnology, 38(9), 153. https://doi.org/10.1007/s11274-022-03343-z
Qais, F. A., Khan, M. S., & Ahmad, I. (2018). Nanoparticles as Quorum Sensing Inhibitor: Prospects and Limitations. In V. C. Kalia (ed.), Biotechnological applications of quorum sensing inhibitors (pp. 227-244). Springer.
Radfar, R., Hosseini, H., Farhoodi, M., Ghasemi, I., Średnicka-Tober, D., Shamloo, E., & Khaneghah, A. M. (2020). Optimization of Antibacterial and Mechanical Properties of an Active LDPE/Starch/Nanoclay Nanocomposite Film Incorporated with Date Palm Seed Extract Using D-Optimal Mixture Design Approach. International Journal of Biological Macromolecules, 158, 790-799. https://doi.org/10.1016/j.ijbiomac.2020.04.139
Rather, M. A., Neog, P. R., Gupta, K., & Mandal, M. (2022). Microbial Biofilm-Mediated Bioremediation of Heavy Metals: A Sustainable Approach. In J. A. Malik (ed.), Microbes and Microbial Biotechnology for Green Remediation (pp. 485-502). Elsevier.
Rawson, T. M., Wilson, R. C., & Holmes, A. (2021). Understanding the Role of Bacterial and Fungal Infection in COVID-19. Clinical Microbiology and Infection, 27(1), 9-11. https://doi.org/10.1016%2Fj.cmi.2020.09.025
Resch, A., Fehrenbacher, B., Eisele, K., Schaller, M., & Götz, F. (2005). Phage Release from Biofilm and Planktonic Staphylococcus aureus Cells. FEMS Microbiology Letters, 252(1), 89-96. https://doi.org/10.1016/j.femsle.2005.08.048
Revie, N. M., Iyer, K. R., Robbins, N., & Cowen, L. E. (2018). Antifungal Drug Resistance: Evolution, Mechanisms and Impact. Current Opinion in Microbiology, 45, 70-76. https://doi.org/10.1016/j.mib.2018.02.005
Said, K. B., Alsolami, A., Khalifa, A. M., Khalil, N. A., Moursi, S., Rakha, E., Osman, A., Rashidi, M., Taha, T. E., & Bashir, A. (2022). Molecular Diagnosis, Antimicrobial Resistance Profiles and Disease Patterns of Gram-Positive Pathogens Recovered from Clinical Infections in Major Ha’il Hospitals. Microbiology Research, 13(1), 49-63. https://doi.org/10.3390/microbiolres13010004
Saleh, M. M., Sadeq, R. A., Latif, H. K. A., Abbas, H. A., & Askoura, M. (2019). Zinc Oxide Nanoparticles Inhibits Quorum Sensing and Virulence in Pseudomonas Aeruginosa. African Health Sciences, 19(2), 2043-2055. https://doi.org/10.4314%2Fahs.v19i2.28
Sekyere, J. O., & Asante, J. (2018). Emerging Mechanisms of Antimicrobial Resistance in Bacteria and Fungi: Advances in the Era of Genomics. Frontiers in Microbiology, 13, 241-262. https://doi.org/10.2217/fmb-2017-0172
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus Biofilm: An Emerging Battleground in Microbial Communities. Antimicrobial Resistance & Infection Control, 8, 76. https://doi.org/10.1186/s13756-019-0533-3
Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food Packaging Based on Polymer Nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003
Singh, B. R., Singh, B. N., Singh, A., Khan, W., Naqvi, A. H., Singh, H. B. (2015). Mycofabricated Biosilver Nanoparticles Interrupt Pseudomonas Aeruginosa Quorum Sensing Systems. Scientific Reports, 5, 13719. https://doi.org/10.1038/srep13719
Singh, R., Ray, P., Das, A., Sharma, M. (2010). Penetration of Antibiotics through Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Journal of Antimicrobial Chemotherapy, 65(9), 1955-1958. https://doi.org/10.1093/jac/dkq257
Siripatrawan, U., & Harte, B. R. (2010). Physical Properties and Antioxidant Activity of an Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocolloids, 24(8), 770-775. https://doi.org/10.1016/j.foodhyd.2010.04.003
Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential Perspectives of Bio-Nanocomposites for Food Packaging Applications. Trends in Food Science and Technology, 18(2), 84-95. https://doi.org/10.1016/j.tifs.2006.09.004
Suvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial Nanomaterials for Food Packaging. Antibiotics, 11(6), 729. https://doi.org/10.3390/antibiotics11060729
Tajeddin, B., Ramedani, N., & Mirzaei, H. (2019). Preparation and Characterization of a Bionanopolymer Film for Walnut Packaging. Polyolefins Journal, 6(2), 159-167. https://doi.org/10.22063/poj.2019.2443.1131
Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial Herb and Spice Compounds in Food. Food Control, 21(9), 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Tanwar, R., Gupta, V., Kumar, P., Kumar, A., Singh, S., & Gaikwad, K. K. (2021). Development and Characterization of PVA-Starch Incorporated with Coconut Shell Extract and Sepiolite Clay as an Antioxidant Film for Active Food Packaging Applications. International Journal of Biological Macromolecules, 185, 451-461. https://doi.org/10.1016/j.ijbiomac.2021.06.179
Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., & Cullen, P. (2009). Application of Natural Antimicrobials for Food Preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987-6000. https://doi.org/10.1021/jf900668n
Tuomanen, E., Cozens, R., Tosch, W., Zak, O., & Tomasz, A. (1986). The Rate of Killing of Escherichia Coli Byβ-Lactam Antibiotics Is Strictly Proportional to the Rate of Bacterial Growth. Journal of Microbiology and Genetics, 132(5), 1297-1304. https://doi.org/10.1099/00221287-132-5-1297
Van Vliet, A. H. M., Thakur, S., Prada, J. M., Mehat, J. W., La Ragione, R. M. (2022). Genomic Screening of Antimicrobial Resistance Markers in UK and US Campylobacter Isolates Highlights Stability of Resistance over an 18-Year Period. Antimicrobial Agents Chemotherapy, 66(5), e0168721. https://doi.org/10.1128/aac.01687-21
Venter, H. (2019). Reversing Resistance to Counter Antimicrobial Resistance in the World Health Organisation’s Critical Priority of Most Dangerous Pathogens. Bioscience Reports, 39(4), bsr20180474. https://doi.org/10.1042/bsr20180474
Woraprayote, W., Kingcha, Y., Amonphanpokin, P., Kruenate, J., Zendo, T., Sonomoto, K., Benjakul, S., & Visessanguan, W. (2013). Anti-Listeria Activity of Poly (Lactic Acid)/Sawdust Particle Biocomposite Film Impregnated with Pediocin PA-1/AcH and Its Use in Raw Sliced Pork. International Journal of Food Microbiology, 167(2), 229-235. https://doi.org/10.1016/j.ijfoodmicro.2013.09.009
Wu, H., Teng, C., Liu, B., Tian, H., & Wang, J. (2018). Characterisation and Long Term Antimicrobial Activity of the Nisin Anchored Cellulose Films. International Journal of Biological Macromolecules, 113, 487-493. https://doi.org/10.1016/j.ijbiomac.2018.01.194
Xing, Y., Li, X., Zhang, L., Xu, Q., Che, Z., Li, W., Bai, Y., & Li, K. (2012). Effect of TiO2 Nanoparticles on the Antibacterial and Physical Properties of Polyethylene-Based Film. Progress in Organic Coatings, 73(2-3), 219-224. https://doi.org/10.1016/j.porgcoat.2011.11.005
Yan, M., Zheng, B., Li, Y., & Lv, Y. (2022). Antimicrobial Susceptibility Trends Among Gram-Negative Bacilli Causing Bloodstream Infections: Results from the China Antimicrobial Resistance Surveillance Trial (CARST) Program, 2011–2020. Infectious and Drug Resistance, 15, 2325-2337. https://doi.org/10.2147/idr.s358788
Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The Microbial “Protective Clothing” in Extreme Environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423
Zaidi, S., Misba, L., & Khan, A. U. (2017). Nano-Therapeutics: A Revolution in Infection Control in Post Antibiotic Era. Nanomedicine, 13(7), 2281-2301. https://doi.org/10.1016/j.nano.2017.06.015
Zimerman, R. A. (2010). Uso Indiscriminado de Antimicrobianos e Resistência Microbiana. Ministério da Saúde.