Polymeric microencapsulation of pequi oil: preparation and characterization
DOI:
https://doi.org/10.5327/fst.00208Keywords:
alginate, Caryocar coriaceum, chitosan, freeze-drying, HLB, microencapsulation, oven-drying, pequi oilAbstract
Microencapsulation is often used to protect an unstable bioactive ingredient from the actions of external factors. In our work, we have found biobased polymers to be particularly suited as polymeric microencapsulants. Thus, pequi oil (from Caryocar coriaceum) was encapsulated by ionic gelation through polyelectrolyte complex formation between chitosan and alginate. The process of microparticle formation was studied, and the formation of the polymeric emulsion and microparticles was fully characterized. The influence of freeze-drying and oven-drying on the characteristics of the microparticles was also investigated. The hydrophilic–lipophilic balance (HLB) was utilized as a testing protocol to prepare a stable emulsion for microencapsulation, with the HLB of 10.2 showing the best stability. The encapsulation efficiency and loading capacity were 96.2 and 37.0%, respectively. Oven-dried particles showed a smaller particle size and a lower degree of sphericity and swelling than freeze-dried particles. Furthermore, freeze-dried microparticles had a lower percentage of oleic acid than those dried in an oven. This systematic approach (involving preparation, characterization, and optimization) should be applicable to the polymeric microencapsulation of other unstable bioactive ingredients for food, cosmetic, and pharmaceutical applications.
Downloads
References
Abbaszadeh, S., Gandomi H., Misaghi A., Bokaei S., & Noori N. (2014). The effect of alginate and chitosan concentrations on some properties of chitosan-coated alginate beads and survivability of encapsulated Lactobacillus rhamnosus in simulated gastrointestinal conditions and during heat processing. Journal of Science Food and Agriculture, 94(11), 2210-2216. https://doi.org/10.1002/jsfa.6541
Agüero, L., Zaldivar-Silva, D., Peña, L., & Dias, M. L. (2017). Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers, 168, 32-43. https://doi.org/10.1016/j.carbpol.2017.03.033
Alexandre, J. B., Barroso, T. L. C. T., Oliveira, M. A., Mendes, F. R. S., Costa, J. M. C., Moreira, R. A., & Furtado, R. F. (2019). Cross-linked coacervates of cashew gum and gelatin in the encapsulation of pequi oil. Ciência Rural, 49(12), e20190079. https://doi.org/10.1590/0103-8478cr20190079
Alvares, G. L. M. (2016). Sistema Microemulsionado usando óleo de pequi (Caryocar coriaceum Wittm) para uso tópico anti-inflamatório. Dissertation, Universidade Estadual da Paraíba, Campina Grande.
Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A Comprehensive review of benefits, techniques, and applications, Comprehensive Reviews in Food Science and Food Safety, 15(1), 143-182. https://doi.org/10.1111/1541-4337.12179
Castelo, R. M., da Silva, L. C., Sousa, J. R, Magalhães, H. C. R., & Furtado, R. F. (2020). Development and Characterization of Pequi Oil (Caryocar coriaceum Wittm.) microparticles by vibration nozzle encapsulation. Macromolecular Symposia, 394(1), 202000061. https://doi.org/10.1002/masy.202000061
Cheng, H. N., & Gross, R. A. (2020). Sustainability and Green Polymer Chemistry – An Overview. American Chemical Society Symposium Series, 1372, 1-11. https://doi.org/10.1021/bk-2020-1372.ch001
Comunian, T. A., Silva, M. P., Moraes, I. C. F., & Favaro-Trindade, C. S. (2020). Reducing carotenoid loss during storage by co-encapsulation of pequi and buriti oils in oil-in-water emulsions followed by freeze-drying: Use of heated and unheated whey protein isolates as emulsifiers. Food Research International, 130, 108901. https://doi.org/10.1016/j.foodres.2019.108901
Da Matta, L. M. (2013). Retenção do óleo de pequi em micropartículas de concentrado protéico de soro de leite e maltodextrina. Dissertation, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
Deladino, L., Anbinder, P. S., Navarro, A. S., & Martino, M. N. (2008). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 71(1), 126-134. https://doi.org/10.1016/j.carbpol.2007.05.030
Dorati, R., Genta, I., Modena, T., & Conti, B. (2013). Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies. Journal of Microencapsulation, 30(6), 559-570. https://doi.org/10.3109/02652048.2013.764938
Gajic, I. M. S., Savic I. M., Gajic, D. G., & Dosic, A. (2021). Ultrasound-Assisted Extraction of Carotenoids from Orange Peel Using Olive Oil and Its Encapsulation in Ca-Alginate Beads. Biomolecules, 11(2), 225. https://doi.org/10.3390%2Fbiom11020225
González-Rodríguez, M. L., Holgado, M. A., Sánchez-Lafuente, C., Rabasco, A. M., & Fini, A. (2002). Alginate/chitosan particulate systems for sodium diclofenac release. International Journal of Pharmaceutics, 232(1-2), 225-234. https://doi.org/10.1016/s0378-5173(01)00915-2
ICI Americas (1984). The HLB System: A Time-saving Guide to Emulsifier Selection. ICI Americas.
Justi, P. N., Sanjinez-Argandoña, E. J., & Macedo, M. L. R. (2018). Microencapsulation of pequi pulp oil by complex coacervation. Revista Brasileira de Fruticultura, 40(2), 1-12. https://doi.org/10.1590/0100-29452018874
Lieberman, H. A., Rieger, M. M., & Banker, G. S. (1989). Pharmaceutical dosage forms: disperse systems. Marcel Dekker.
Lima, A. C., Barros, M. E. S., de Souza, A. C. R, Araújo, Í. M. da S., Magalhães, H. C. R., & Pacheco, G. M. (2019). Obtenção do Óleo da Polpa de Pequi por Separação Física Utilizando-se Centrifugação. Embrapa Comunicado Técnico, 254, 1-6.
Lopes, C. M., Lobo, J. M. S., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Brazilian Journal of Pharmaceutical Sciences, 41(2), 143-154. https://doi.org/10.1590/S1516-93322005000200003
Marfil, P. H. M., Paulo, B. B., Alvim, I. D., & Nicoletti, V. R. (2018). Production and characterization of palm oil microcapsules obtained by complex coacervation in gelatin/gum Arabic. Journal of Food Process Engineering, 41(4), e12673. https://doi.org/10.1111/jfpe.12673
Mariano, R. G. B., Couri, S., & Freitas, S. P. (2009). Enzymatic technology to improve oil extraction from Caryocar brasiliense Camb (pequi) pulp. Revista Brasileira de Fruticultura, 31(3), 637-643. https://doi.org/10.1590/S0100-29452009000300003
Menin, A., Zanoni, F., Vakarelova, M., Donà, R. C. G., Rizzi, C., Mainente, F., & Zoccateli, G. (2018). Effects of microencapsulation by ionic gelation on the oxidative stability of flaxseed oil. Food Chemistry, 269, 293-299. https://doi.org/10.1016/j.foodchem.2018.06.144
Oliveira, É. R., Fernandes, R. V. B., Botrel, D. A., Carmo, E. L., Borges, S. V., & Queiroz, F. (2018). Study of Different Wall Matrix Biopolymers on the Properties of Spray-Dried Pequi Oil and on the Stability of Bioactive Compounds. Food Bioprocess Technology, 11, 660-679. https://doi.org/10.1007/s11947-017-2027-8
Oliveira, W., & Scariot, L. A. (2010). Boas práticas de manejo para o extrativismo sustentável do Pequi. EMBRAPA.
Otálora, M. C., Carriazo, J. G., Osorio, C., & Nazareno, M. A. (2018). Encapsulation of cactus (Opuntia megacantha) betaxanthins by ionic gelation and spray drying: A comparative study. Food Research International, 111, 423-430. https://doi.org/10.1016/j.foodres.2018.05.058
Paulo, F., & Santos, L. (2017). Design of experiments for microencapsulation applications: A review. Materials Science and Engineering: C, 77, 1327-1340. https://doi.org/10.1016/j.msec.2017.03.219
Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique. Journal of Agricultural and Food Chemistry, 26(3), 716-723. https://doi.org/10.1021/jf60217a041
Raghavan, V. (2020). Sustainable drying technologies. Drying Technology, 38, 2118-2119.
Riley, N. A. (1941). Projection Sphericity. Journal of Sedimentary Petrology, 11(2), 94-95. https://doi.org/10.1306/D426910C-2B26-11D7-8648000102C1865D
Sanches, M., Gross, I., Saatkamp, R., Parize, A., & Soldi, V. (2020). Chitosan-Sodium Alginate Polyelectrolyte Complex Coating Pluronic® F127 Nanoparticles Loaded with Citronella Essential Oil. Journal of the Brazilian Chemical Society, 31(4), 803-812. https://doi.org/10.21577/0103-5053.20190244
Saraiva, R. A., Araruna, M. K. A., Oliveira, R. C., Menezes, K. D. P., Leite, G. O., Kerntopf, M. R., Costa, J. G. M., Rocha, J. B. T., Tomé, A. R., Campos, A. R., & Menezes, I. R. A. (2011). Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents. Journal of Ethnopharmacology, 136(3), 504-510. https://doi.org/10.1016/j.jep.2010.07.002
Savic, I. M., Gajic, I. M. S., Milovanovic, M. G., Zerajic, S., & Gajic, D. G. (2022). Optimization of Ultrasound-Assisted Extraction and Encapsulation of Antioxidants from Orange Peels in Alginate-Chitosan Microparticles. Antioxidants, 11(2), 297. https://doi.org/10.3390/antiox11020297
Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107(Part B), 1800-1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044
Shah, R., Eldridge, D., Palombo, E., & Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of Physical Science, 25(1), 59-75.
Silva, L. C., Castelo, R. M., Magalhães, H. C. R., Furtado, R. F., Cheng, H. N., Biswas, A., & Alves, C. R. (2022). Characterization and controlled release of pequi oil microcapsules for yogurt application. LWT - Food Science Technology, 157, 113105. https://doi.org/10.1016/j.lwt.2022.113105
Simões, L. S., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, Ó. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45. https://doi.org/10.1016/j.cis.2017.02.010
Teixeira, V. F. T., Pereira, N. R., Waldman, W. R., Ávila, A. L. C. D., Pérez, V. H., & Rodríguez, R. J. S. (2014). Ion exchange kinetics of magnetic alginate ferrogel beads produced by external gelation. Carbohydrate Polymers, 111, 198-205. https://doi.org/10.1016/j.carbpol.2014.04.009
Yadav, S. K., Khan, G. K., Bonde, V., Bansal, M., & Mishra, B. (2018). Design, optimization and characterizations of chitosan fortified calcium alginate microspheres for the controlled delivery of dual drugs. Artif. Cells. Nanomedicine Biotechnology, 46(6), 1180-1193. https://doi.org/10.1080/21691401.2017.1366331
Zanetti, B. G., Soldi, V. S., & Lemos-Senna, E. (2002). Efeito da adição de polietilenoglicóis nas formulações de microesferas de acetobutirato de celulose sobre a eficiência de encapsulação da carbamazepina e morfologia das partículas. Brazilian Journal of Pharmaceutical Sciences, 38(2), 229-236. https://doi.org/10.1590/S1516-93322002000200012