Using smartphone for monitoring colorimetric reactions aiming at determining antioxidant activity
DOI:
https://doi.org/10.5327/fst.00198Keywords:
digital image analysis, grape juice, mobile app, antioxidantsAbstract
The use of technology for antioxidant determination in foods has contributed toward enhancing the applicability of this analysis in in vitro assays. The present study sought to evaluate the activity of antioxidants in food products using the following analytical methodologies: analysis of total phenols, flavonoids, ABTS, DPPH, reducing power by potassium ferricyanide, and FRAP, using the smartphone app PhotoMetrix PRO®. These methodologies underwent analytical validation demonstrating linearity at 95% confidence interval, while residues displayed homoscedasticity and random distribution. The values obtained for the limit of detection (LOD) and limit of quantification (LOQ) were below the working range for all methodologies. The correlation coefficients obtained for the curves were above 0.99, except for the FRAP method. For the analysis, the values obtained for relative standard deviation (RSD %) for repeatability and intermediate precision were lower than 5%, except for ABTS and DPPH analysis, which presented values lower than 10%. The PhotoMetrix PRO® app has proven to be efficient for use in the analysis of whole grape juice samples, when compared to UV-VIS spectrophotometer.
Downloads
References
Al-Nidawi, M., & Alshana, U. (2021). Reversed-phase switchable-hydrophilicity solvent liquid-liquid microextraction of copper prior to its determination by smartphone digital image colorimetry. Journal of Food Composition and Analysis, 104, 104140. https://doi.org/10.1016/j.jfca.2021.104140
Anh-Dao, L. T., Thanh-Nho, N., Huu-Trung, B., Tien-Giang, N., Ut Dong, T., Quoc-Duy, N., Quang-Hieu, N., Le-Vy, N., Thanh-Dieu, N. T., To, D. V. T., Minh-Huy, D., & Cong-Hau, N. (2023). A portable colorimetric tool using a smartphone camera applied for determining total phenolic contents in coffee products. Chinese Journal of Analytical Chemistry, 51(3), 100228. https://doi.org/10.1016/j.cjac.2023.100228
Association of Official Analytical Chemists (AOAC) (2016). Official methods of analysis of the Association of Official Analytical Chemists. AOAC. Retrieved from https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367#full
Bazani, E. J. O., Barreto, M. S., Demuner, A. J., Santos, M. H., Cerceau, C. I., Blank, D. E., Firmino, M. J. M., Souza, G. S. F., Franco, M. O. K., Suarez, W. T., & Stringheta, P. C. (2021). Smartphone Application for Total Phenols Content and Antioxidant Determination in Tomato, Strawberry, and Coffee Employing Digital Imaging. Food Analytical Methods, 14(4), 631-640. https://doi.org/10.1007/s12161-020-01907-z
Berker, K. I., Güçlü, K., Tor, İ., & Apak, R. (2007). Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157-1165. https://doi.org/10.1016/j.talanta.2007.01.019
Boroski, M., Visentainer, J. V., Cottica, S. M., & Morais, D. R. (2015). Antioxidantes: Princípios e Métodos Analíticos. Appris.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Calabria, D., Guardigli, M., Severi, P., Trozzi, I., Pace, A., Cinti, S., Zangheri, M., & Mirasoli, M. (2021). A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by In Situ AuNP Formation. Sensors, 21(16), 5432. https://doi.org/10.3390/s21165432
Caleb, J., & Alshana, U. (2021). Supramolecular solvent-liquid-liquid microextraction followed by smartphone digital image colorimetry for the determination of curcumin in food samples. Sustainable Chemistry and Pharmacy, 21, 100424. https://doi.org/10.1016/j.scp.2021.100424
Caleb, J., Alshana, U., & Ertaş, N. (2021). Smartphone digital image colorimetry combined with solidification of floating organic drop-dispersive liquid-liquid microextraction for the determination of iodate in table salt. Food Chemistry, 336, 127708. https://doi.org/10.1016/j.foodchem.2020.127708
Caramês, E. T. S., Alamar, P. D., & Lima Pallone, J. A. (2020). Bioactive Compounds and Antioxidant Capacity in Freeze-Dried Red Cabbage by FT-NIR and MIR Spectroscopy and Chemometric Tools. Food Analytical Methods, 13(1), 78-85. https://doi.org/10.1007/s12161-019-01523-6
Caramês, E. T. S., Alamar, P. D., Poppi, R. J., & Pallone, J. A. L. (2017). Rapid Assessment of Total Phenolic and Anthocyanin Contents in Grape Juice Using Infrared Spectroscopy and Multivariate Calibration. Food Analytical Methods, 10(5), 1609-1615. https://doi.org/10.1007/s12161-016-0721-1
Costa, V., Neiva, A., & Pereira-Filho, E. (2019). Chromium speciation in leather samples: An experiment using digital images, mobile phones and environmental concepts. Eclética Química Journal, 44(1), 62-74. https://doi.org/10.26850/1678-4618eqj.v44.1.2019.p62-74
De Lourenço, E. C., De Paula, S., De Setti, G. O., Toci, A. T., Padilha, J. C., Da Silva, E. M., & Boroski, M. (2021). Determination of iron content using the PhotoMetrix PRO® application: Technology in favor of teaching chemistry. Revista Virtual de Química, 13(1), 192-206. https://doi.org/10.21577/1984-6835.20200137
dos Santos, V. B., da Silva, E. K. N., de Oliveira, L. M. A., & Suarez, W. T. (2019). Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits. Food Chemistry, 285, 340-346. https://doi.org/10.1016/j.foodchem.2019.01.167
Dowd, L. E. (1959). Spectrophotometric Determination of Quercetin. Analytical Chemistry, 31(7), 1184-1187. https://doi.org/10.1021/ac60151a033
Firdaus, M. L., Aprian, A., Meileza, N., Hitsmi, M., Elvia, R., Rahmidar, L., & Khaydarov, R. (2019). Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors, 7(2), 25. https://doi.org/10.3390/chemosensors7020025
Helfer, G. A., Magnus, V. S., Böck, F. C., Teichmann, A., Ferrão, M. F., & Costa, A. B. da (2016). PhotoMetrix: An Application for Univariate Calibration and Principal Components Analysis Using Colorimetry on Mobile Devices. Journal of the Brazilian Chemical Society, 28(2), 328-335. https://doi.org/10.5935/0103-5053.20160182
Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) (2016). Orientação Sobre Validação de Métodos Analíticos, Brazil. INMETRO. Retrieved from http://www.inmetro.gov.br/Sidoq/Arquivos/Cgcre/DOQ/DOQ-Cgcre-8_05.pdf.
Kirigaya, N., Kato, H., & Fujimaki, M. (1971). Studies on antioxidant activity of nonenzymic browning reaction products III. Nippon Nogeikagaku Kaishi, 45(6), 292-298. https://doi.org/10.1271/nogeikagaku1924.45.292
Ledesma, C. M., Krepsky, L. M., & Borges, E. M. (2019). Using a Flatbed Scanner and Automated Digital Image Analysis To Determine the Total Phenolic Content in Beer. Journal of Chemical Education, 96(10), 2315-2321. https://doi.org/10.1021/acs.jchemed.8b01037
Mahato, K., & Chandra, P. (2019). Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosensors and Bioelectronics, 128, 9-16. https://doi.org/10.1016/j.bios.2018.12.006
Minh-Huy, D., Anh-Dao, L.-T., Thanh-Nho, N., Nhon-Duc, L., & Cong-Hau, N. (2023). Smartphone-based digital images as a low-cost and simple colorimetric approach for the assessment of total phenolic contents in several specific Vietnamese dried tea products and their liquors. Food Chemistry, 401, 134147. https://doi.org/10.1016/j.foodchem.2022.134147
Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57(5), 1655-1666. https://doi.org/10.1021/jf803537k
Pappis, C., Librelotto, M., Baumann, L., Parckert, A. B., Santos, R. O., Teixeira, I. D., Helfer, G. A., Lobo, E. A., & da Costa, A. Ben. (2019). Point-of-use determination of fluoride and phosphorus in water through a smartphone using the PhotoMetrix® App. Brazilian Journal of Analytical Chemistry, 6(25), 58-66. https://doi.org/10.30744/BRJAC.2179-3425.TN-25-2019
Rice-Evans, C., & Miller, N. J. (1994). Total antioxidant status in plasma and body fluids. Methods in Enzymology, 234, 279-293. https://doi.org/10.1016/0076-6879(94)34095-1
Ribeiro, F. A. L., Ferreira, M. M. C., Morano, S. C., da Silva, L. R., & Schneider, R. P. (2008). Planilha de validação: uma nova ferramenta para estimar figuras de mérito na validação de métodos analíticos univariados. Química Nova, 31(1), 164-171. https://doi.org/10.1590/S0100-40422008000100029
Santos, S. D. C., Cruz, K. M. G., Costa, R., Gonçalves, I. M., Lima, R. C. C., Oliveira, S. M., Mello, A. A., Luz, E. R. (2021). Colorimetric determination of iron content in pharmaceutical formulations using a smartphone camera associated with color measurement applications. Revista Eletrônica Perspectivas da Ciência e Tecnologia, 13, 197-207. https://doi.org/10.22407/1984-5693.2021.v13.p.197-207
Siddeeg, A., AlKehayez, N. M., Abu-Hiamed, H. A., Al-Sanea, E. A., & AL-Farga, A. M. (2021). Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi Journal of Biological Sciences, 28(3), 1633-1644. https://doi.org/10.1016/j.sjbs.2020.11.064
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in VegetablesEvaluation of Spectrophotometric Methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616. https://doi.org/10.1021/jf052334j
Thongsuk, P., & Sameenoi, Y. (2022). Colorimetric determination of radical scavenging activity of antioxidants using Fe3O4 magnetic nanoparticles. Arabian Journal of Chemistry, 15(1), 103475. https://doi.org/10.1016/j.arabjc.2021.103475
Vallejos, S., Moreno, D., Ibeas, S., Muñoz, A., García, F. C., & García, J. M. (2019). Polymeric chemosensor for the colorimetric determination of the total polyphenol index (TPI) in wines. Food Control, 106, 106684. https://doi.org/10.1016/j.foodcont.2019.06.010
Zheng, S., Li, H., Fang, T., Bo, G., Yuan, D., & Ma, J. (2022). Towards citizen science. On-site detection of nitrite and ammonium using a smartphone and social media software. Science of The Total Environment, 815, 152613. https://doi.org/10.1016/j.scitotenv.2021.152613