Effect of different extraction methods on yield and quality of araticum (Annona crassiflora Mart.) seed oil
DOI:
https://doi.org/10.5327/fst.00176%20Keywords:
antioxidants, araticum, cerrado, seed oilAbstract
Microwave- and ultrasound-assisted extraction methods can increase the yield and quality of oil extraction. This study investigated their effects on araticum seed oil extraction compared with conventional methods. Oils were extracted using press and Soxhlet techniques, combined with microwave- and ultrasound-assisted methods at different times. Key parameters such as yield, acidity index, peroxide index, iodine index, moisture, saponification index, ether-insoluble impurities, antioxidant activity by DPPH and ABTS methods, and fatty acid profile were evaluated. The highest oil yield (24.22%) was achieved by combining the press with Soxhlet. Based on EC50 values, antioxidant activities ranged from 1.06 ± 0.10 to 5.19 ± 0.39 mg/mL and 2.26 ± 0.33 to 10.43 ± 0.28 µM trolox/g for DPPH and ABTS, respectively. The ultrasound-assisted method showcased superior antioxidant activity. Predominant fatty acids included oleic, linoleic, palmitic, and stearic acids. Extractions by ultrasound-assisted press at 15 and 30 min showed enhanced antioxidant potency and reduced peroxide and acidity indices. The extraction method affected the characteristics of the oil, and changes in the fatty acid profile were observed. Non-heating methods yielded more unsaturated acids but with low extraction yield.
Downloads
References
American Oil Chemisys Society (AOCS). (2004). Official Methods and Recommended Practices of the American Oil Chemists Society. AOCS.
Arruda, H. S., Pereira, G. A., de Morais, D. R., Eberlin, M. N., & Pastore, G. M. (2018). Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chemistry, 245, 738-749. https://doi.org/10.1016/j.foodchem.2017.11.120
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Cabral, A. L. (2011). Avaliação da qualidade do óleo do pinhão manso (jatropha curcas l.) submetido à secagem em diferentes temperaturas. Doctoral dissertation, Instituto Federal de Educação.
Chemat, F., Abert Vian, M., Ravi, H. K., Khadhraoui, B., Hilali, S., Perino, S., & Fabiano Tixier, A. S. (2019). Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules, 24(16), 3007. https://doi.org/10.3390/molecules24163007
Codex Alimentarius (2017). Codex Standard for edible fats and oils not covered by individual standards.CODEX STAN 19-1981, Rev. 2 –1999. Food and Agriculture Organization of the United Nations. Retrieved from www.codexalimentarius.org
Dias, J. L., Mazzutti, S., de Souza, J. A., Ferreira, S. R., Soares, L. A., Stragevitch, L., & Danielski, L. (2019). Extraction of umbu (Spondias tuberosa) seed oil using CO2, ultrasound and conventional methods: Evaluations of composition profiles and antioxidant activities. The Journal of Supercritical Fluids, 145, 10-18. https://doi.org/10.1016/j.supflu.2018.11.011
Ferreira, I. J., Alexandre, E. M., Saraiva, J. A., & Pintado, M. (2022). Green emerging extraction technologies to obtain high-quality vegetable oils from nuts: A review. Innovative Food Science & Emerging Technologies, 76, 102931. https://doi.org/10.1016/j.ifset.2022.102931
Ferreira, M. de C., Costa, S., & Pasin, L. (2015). Uso de resíduos da agroindústria de bananas na composição de substratos para produção de mudas de pau pereira. Nativa, 3(2), 120-124. https://doi.org/10.31413/nativa.v3i2.1839
Food and Agriculture Organization of the United Nations (FAO/WHO). (2001). Codex standard for named vegetable oils. Codex Alimentarius Fats, Oils, and Related Products, 8, 11-25.
Gaber, M. A. F. M., Tujillo, F. J., Mansour, M. P., & Juliano, P. (2018). Improving oil extraction from canola seeds by conventional and advanced methods. Food Engineering Reviews, 10, 198-210. https://doi.org/10.1007/s12393-018-9182-1
Goula, A. M. (2013). Ultrasound-assisted extraction of pomegranate seed oil - Kinetic modeling. Journal of Food Engineering, 117(4), 492-498. https://doi.org/10.1016/j.jfoodeng.2012.10.009
Guimarães, A. K. V., Chiavone-Filho, O., Nascimento, C. A. O. do, Teixeira, A. C. S. C., & Melo, H. N. de S. (2016). Estudo da caracterização da borra de petróleo e processo de extração do óleo. Engenharia Sanitaria e Ambiental, 21(2), 265-274. https://doi.org/10.1590/s1413-41522016139564
Gupta, M. K. (2017). Practical Guide to Vegetable Oil Processing (2nd ed.). American Oil Chemists Society.
International Olive Council (IOC). (2015). Détermination des acides gras libres, méthode à froid. Retrieved from http://www.internationaloliveoil.org/
Kobori, C. N., & Jorge, N. (2005). Caracterização dos óleos de algumas sementes de frutas como aproveitamento de resíduos industriais. Ciência e Agrotecnologia, 29(5), 1008-1014. https://doi.org/10.1590/S1413-70542005000500014
Koubaa, M., Mhemdi, H., Barba, F. J., Roohinejad, S., Greiner, R., & Vorobiev, E. (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Research International, 85, 59-66. https://doi.org/10.1016/j.foodres.2016.04.007
Lin, J. T., Liu, S. C., Hu, C. C., Shyu, Y. S., Hsu, C. Y., & Yang, D. J. (2016). Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chemistry, 190, 520-528. https://doi.org/10.1016/j.foodchem.2015.06.004
Luzia, D. M. M., & Jorge, N. (2013). Bioactive substance contents and antioxidant capacity of the lipid fraction of Annona crassiflora Mart. seeds. Industrial Crops and Products, 42, 231-235. https://doi.org/10.1016/j.indcrop.2012.05.027
Martins, J., Santos, J., & da Conceição, M. (2020). Comparative Study of Physico-Chemical Properties of Coconut Oil (Cocos nucifera L.) Obtained by Industrial and Artisanal Processes. Biotechnology, 16(3), 210. https://doi.org/10.37532/tsbt.2020.16(3).210
Melhaoui, R., Kodad, S., Houmy, N., Belhaj, K., Mansouri, F., Abid, M., Mihamou, A., Sindic, M., Serghini-Caid, H., & Elamrani, A. (2021). Characterization of sweet almond oil content of four european cultivars (ferragnes, ferraduel, fournat, and marcona) recently introduced in Morocco. Scientifica, 2021, 9141695. https://doi.org/10.1155/2021/9141695
Mohanta, R. K. (2016). Correct Citation of AOAC (Official Methods of Analysis of AOAC International). American Oil Chemists Society. https://doi.org/10.13140/RG.2.2.20883.89125
Pereira, M. G., Hamerski, F., Andrade, E. F., Scheer, A. D. P., & Corazza, M. L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. Journal of Supercritical Fluids, 128, 338-348. https://doi.org/10.1016/j.supflu.2017.03.021
Prado, L. G., Arruda, H. S., Araujo, N. M. P., de Oliveira Braga, L. E., Banzato, T. P., Pereira, G. A., Figueiredo, M. C., Ruiz, A. L. T. G., Eberlin, M. N., Carvalho, J. E., Vendramini-Costa, D. B., & Pastore, G. M. (2020). Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Research International, 133, 109168. https://doi.org/10.1016/j.foodres.2020.109168
Ramos, A. L. C. C., Minighin, E. C., Soares, I. I. C., Ferreira, R. M. D. S. B., de Sousa, I. M. N., Augusti, R., Labanca, R. A., Araújo, R. L. B., & Melo, J. O. F. (2023). Evaluation of the total phenolic content, antioxidative capacity, and chemical fingerprint of Annona crassiflora Mart. bioaccessible molecules. Food Research International, 165, 112514. https://doi.org/10.1016/j.foodres.2023.112514
Reis, A. F., & Schmiele, M. (2019). Características e potencialidades dos frutos do Cerrado na indústria de alimentos. Brazilian Journal of Food Technology, 22, e15017. https://doi.org/10.1590/1981-6723.15017
Ribeiro, L. R., Santos, M. F., Silva, Q. M., Palmieri, M. J., Andrade-Vieira, L. F., & Davide, L. C. (2013). Cytogenotoxic effects of ethanolic extracts of Annona crassiflora (Annonaceae). Biologia, 68(3), 433-438. https://doi.org/10.2478/s11756-013-0185-3
Roesler, R., Catharino, R. R., Malta, L. G., Eberlin, M. N., & Pastore, G. (2007). Antioxidant activity of Annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry. Food Chemistry, 104(3), 1048-1054. https://doi.org/10.1016/j.foodchem.2007.01.017
Rufino, M. do S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, G. C., Jimenez, J. P., & Calixto, F. D. S. (2007). Determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS⁎+− Metodologia Científica. EMBRAPA.
Santos Oliveira, M. O., Dias, B. B., Pires, C. R. F., Freitas, B. C. B., de Aguiar, A. O., da Silva, J. F. M., & de Souza Martins, G. A. (2022). Development of Araticum (Annona crassiflora Mart.) jams: evaluation of physical, microbiological, and sensorial stability in different packages. Journal of Food Science and Technology, 59(9), 3399-3407. https://doi.org/10.1007/s13197-021-05323-x
Satriana, S., Supardan, M. D., Arpi, N., & Wan Mustapha, W. A. (2019). Development of methods used in the extraction of avocado oil. European Journal of Lipid Science and Technology, 121(1), 1800210. https://doi.org/10.1002/ejlt.201800210
Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067-4079. https://doi.org/10.1039/b922183m
Sotelo-Méndez, A., Pascual-Chagman, G., Santa-Cruz-Olivos, J., Norabuena Meza, E., Calizaya-Milla, Y. E., Huaringa-Joaquín, A., Tapia, E. V., & Saintila, J. (2023). Fatty Acid Profile and Chemical Composition of Oil from Six Varieties of Lupine (Lupinus mutabilis) Consumed in Peru. Journal of Food Quality, 2023, 3531839. https://doi.org/10.1155/2023/3531839
Taghvaei, M., Jafari, S. M., Assadpoor, E., Nowrouzieh, S., & Alishah, O. (2014). Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties. Food Chemistry, 160, 90-97. https://doi.org/10.1016/j.foodchem.2014.03.064
Thilakarathna, R. C. N., Siow, L. F., Tang, T. K., & Lee, Y. Y. (2023). A review on application of ultrasound and ultrasound assisted technology for seed oil extraction. Journal of Food Science and Technology, 60(4), 1222-1236. https://doi.org/10.1007/s13197-022-05359-7
Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H., & Ma, H. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science & Technology, 118(Part A), 252-260. https://doi.org/10.1016/j.tifs.2021.09.025
Zhang, Y., Wang, M., Zhang, X., Qu, Z., Gao, Y., Li, Q., & Yu, X. (2023). Mechanism, indexes, methods, challenges, and perspectives of edible oil oxidation analysis. Critical Reviews in Food Science and Nutrition, 63(21), 4901-4915. https://doi.org/10.1080/10408398.2021.2009437