Prevalence of Multidrug-resistant Escherichia coli in the Swine Production Chain: Implications for Food Safety in Brazilian Slaughterhouses

Autores

  • Natalia Pereira Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0001-5914-084X
  • Leandro Augusto Mariano Silva Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0009-0008-4982-4226
  • Romário Alves Rodrigues Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0002-2153-4197
  • Mareliza Possa de Menezes Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Veterinary Sciences, Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0002-0294-5126
  • Luis Felippe Agrião Moretto Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0002-0086-9908
  • Camila Chioda de Almeida Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0001-5454-5426
  • Gabriel Augusto Marques Rossi Universidade Vila Velha, Department of Veterinary Medicine, Vila Velha, Espírito Santo State, Brazil. https://orcid.org/0000-0001-7967-7628
  • Fernando Antônio de Ávila Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0002-2448-7592
  • Marita Vedovelli Cardozo Universidade Estadual Paulista “Júlio de Mesquita Filho”, Post Graduate Program in Agricultural Microbiology, Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, Jaboticabal, São Paulo, Brazil. https://orcid.org/0000-0003-3972-0198

DOI:

https://doi.org/10.5327/fst.477

Palavras-chave:

antimicrobial resistance, blaCTX-M, carcasses, ESBL, pig, public health

Resumo

Multidrug resistance is a significant threat to global public health. This study aimed to detect and characterize antimicrobial-resistant microorganisms in swine feces and carcasses obtained from slaughterhouses. A total of 214 samples were collected, comprising 111 swine feces and 103 from carcasses, across two different slaughterhouses. Polymerase chain reaction was used to detect antimicrobial resistance genes, identifying 22 resistant isolates that were subsequently confirmed to be Escherichia coli. Pulsed-field gel electrophoresis was performed on these 22 isolates to investigate their genetic similarity. The Kirby–Bauer disk diffusion method characterized phenotypic resistance to different antimicrobials. The blaCTX-M-1 gene was detected in all 22 E. coli isolates. Additionally, 90.9% of the strains were considered multidrug-resistant, exhibiting resistance to at least three different antimicrobial classes. The isolates exhibited high genetic diversity. The presence of these multidrug-resistant bacteria in swine and animal-derived foods emphasizes the importance of sanitation measures during production to protect public health.

Downloads

Não há dados estatísticos.

Referências

Aasmäe, B., Häkkinen, L., Kaart, T., & Kalmus, P. (2019). Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from Estonian cattle and swine from 2010 to 2015. Acta Veterinaria Scandinavica, 61(1), Article 5. https://doi.org/10.1186/s13028-019-0441-9

Albernaz-Gonçalves, R., Olmos, G., & Hötzel, M. J. (2021). Exploring farmers’ reasons for antibiotic use and misuse in pig farms in Brazil. Antibiotics, 10(3), Article 331. https://doi.org/10.3390/antibiotics10030331

Benavides, J. A., Salgado-Caxito, M., Opazo-Capurro, A., Muñoz, P. G., Piñeiro, A., Medina, M. O., Rivas, L., Munita, J., & Millán, J. (2021). ESBL-producing Escherichia coli carrying CTX-M genes circulating among livestock, dogs, and wild mammals in small-scale farms of central Chile. Antibiotics, 10(5), Article 510. https://doi.org/10.3390/antibiotics10050510

Borges, C. A., Beraldo, L. G., Maluta, R. P., Cardozo, M. V., Guth, B. E. C., Rigobelo, E. C., & Ávila, F. A. (2012). Shiga toxigenic and atypical enteropathogenic Escherichia coli in the feces and carcasses of slaughtered pigs. Foodborne Pathogens and Disease, 9(12), 1119–1125. https://doi.org/10.1089/fpd.2012.1206

Cantón, R., González-Alba, J. M., & Galán, J. C. (2012). CTX-M enzymes: Origin and diffusion. Frontiers in Microbiology, 3, Article 110. https://doi.org/10.3389/fmicb.2012.00110

Cheng, G., Ning, J., Ahmed, S., Huang, J., Ullah, R., An, B., Hao, H., Dai, M., Huang, L., Wang, X., & Yuan, Z. (2019). Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrobial Resistance and Infection Control, 8(1), Article 158. https://doi.org/10.1186/s13756-019-0623-2

Clinical and Laboratory Standards Institute. (2024a). CLSI VET01S: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals (7th ed.). CLSI.

Clinical and Laboratory Standards Institute. (2024b). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals (34th ed.). CLSI.

Conedera, G., Mattiazzi, E., Russo, F., Chiesa, E., Scorzato, I., Grandesso, S., Bessegato, A., Fioravanti, A., & Caprioli, A. (2007). A family outbreak of Escherichia coli O157 haemorrhagic colitis caused by pork meat salami. Epidemiology and Infection, 135(2), 311–314. https://doi.org/10.1017/S0950268806006807

Cormier, A., Zhang, P. L. C., Chalmers, G., Weese, J. S., Deckert, A., Mulvey, M., McAllister, T., & Boerlin, P. (2019). Diversity of CTX-M-positive Escherichia coli recovered from animals in Canada. Veterinary Microbiology, 231, 71–75. https://doi.org/10.1016/j.vetmic.2019.02.031

Crits-Christoph, A., Hallowell, H. A., Koutouvalis, K., & Suez, J. (2022). Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes, 14(1), Article 2055944 . https://doi.org/10.1080/19490976.2022.2055944

Dewulf, J., Joosten, P., Chantziaras, I., Bernaerdt, E., Vanderhaeghen, W., Postma, M., & Maes, D. (2022). Antibiotic Use in European Pig Production: Less Is More. Antibiotics, 11(11), Article 1493. https://doi.org/10.3390/antibiotics11111493

Egbule, O. S., Iweriebor, B. C., & Odum, E. I. (2021). Beta-lactamase-producing Escherichia coli isolates recovered from pig handlers in retail shops and abattoirs in selected localities in Southern Nigeria: Implications for public health. Antibiotics, 10(1), Article 9. https://doi.org/10.3390/antibiotics10010009

Ewers, C., Janßen, T., Kießling, S., Philipp, H.-C., & Wieler, L. H. (2004). Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Veterinary Microbiology, 104(1–2), 91–101. https://doi.org/10.1016/j.vetmic.2004.09.008

Faccone, D., Moredo, F. A., Giacoboni, G. I., Albornoz, E., Alarcón, L., Nievas, V. F., & Corso, A. (2019). Multidrug-resistant Escherichia coli harbouring mcr-1 and blaCTX-M genes isolated from swine in Argentina. Journal of Global Antimicrobial Resistance, 18, 160–162. https://doi.org/10.1016/j.jgar.2019.03.011

Geser, N., Stephan, R., Kuhnert, P., Zbinden, R., Kaeppeli, U., Cernela, N., & Haechler, H. (2011). Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. Journal of Food Protection, 74(3), 446–449. https://doi.org/10.4315/0362-028X.JFP-10-372

Gundran, R. S., Cardenio, P. A., Villanueva, M. A., Sison, F. B., Benigno, C. C., Kreausukon, K., Pichpol, D., & Punyapornwithaya, V. (2019). Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Veterinary Research, 15(1), Article 227. https://doi.org/10.1186/s12917-019-1975-9

Guragain, M., Schmidt, J. W., Bagi, L. K., Paoli, G. C., Kalchayanand, N., & Bosilevac, J. M. (2024). Antibiotic Resistance and Disinfectant Resistance Among Escherichia coli Isolated During Red Meat Production. Journal of Food Protection, 87(6), Article 100288. https://doi.org/10.1016/j.jfp.2024.100288

Guyomard-Rabenirina, S., Reynaud, Y., Pot, M., Albina, E., Couvin, D., Ducat, C., Gruel, G., Ferdinand, S., Legreneur, P., Le Hello, S., Malpote, E., Sadikalay, S., Talarmin, A., & Breurec, S. (2020). Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single blaCTX–M–1/IncI1/ST3 Plasmid Among Humans and Wild Animals. Frontiers in Microbiology, 11, Article 1524. https://doi.org/10.3389/fmicb.2020.01524

Hamel, M., Rolain, J.-M., & Baron, S. A. (2021). The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms, 9(2), Article 442. https://doi.org/10.3390/microorganisms9020442

Headd, B., & Bradford, S. A. (2020). The Conjugation Window in an Escherichia coli K-12 Strain with an IncFII Plasmid. Applied and Environmental Microbiology, 86(17), Article e00948-20. https://doi.org/10.1128/AEM.00948-20

Hesp, A., ter Braak, C., van der Goot, J., Veldman, K., van Schaik, G., & Mevius, D. (2021). Antimicrobial resistance clusters in commensal Escherichia coli from livestock. Zoonoses and Public Health, 68(3), 194–202. https://doi.org/10.1111/zph.12805

Hirsch, A. C., Philipp, H., & Kleemann, R. (2003). Investigation on the efficacy of meloxicam in sows with mastitis–metritis–agalactia syndrome. Journal of Veterinary Pharmacology and Therapeutics, 26(5), 355–360. https://doi.org/10.1046/j.1365-2885.2003.00524.x

Holman, D. B., & Chénier, M. R. (2015). Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian Journal of Microbiology, 61(11), 785–798. https://doi.org/10.1139/cjm-2015-0239

Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0

Hussein, N. H., AL-Kadmy, I. M. S., Taha, B. M., & Hussein, J. D. (2021). Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Molecular Biology Reports, 48(3), 2897–2907. https://doi.org/10.1007/s11033-021-06307-y

Kieffer, N., Nordmann, P., Moreno, A. M., Moreno, L. Z., Chaby, R., Breton, A., Tissières, P., & Poirel, L. (2018). Genetic and Functional Characterization of an MCR-3-Like Enzyme-Producing Escherichia coli Isolate Recovered from Swine in Brazil. Antimicrobial Agents and Chemotherapy, 62(7), Article e00278-18. https://doi.org/10.1128/AAC.00278-18

Kimera, Z. I., Mgaya, F. X., Misinzo, G., Mshana, S. E., Moremi, N., & Matee, M. I. N. (2021). Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam, Tanzania. Antibiotics, 10(4), Article 406. https://doi.org/10.3390/antibiotics10040406

Larbi, R. O., Ofori, L. A., Sylverken, A. A., Ayim-Akonor, M., & Obiri-Danso, K. (2021). Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana. International Journal of Microbiology, 2021, Article 5158185. https://doi.org/10.1155/2021/5158185

Lima, L. M., Silva, B. N. M., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry, 208, Article 112829. https://doi.org/10.1016/j.ejmech.2020.112829

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2011). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Mitsuwan, W., Intongead, S., Saengsawang, P., Romyasamit, C., Narinthorn, R., Nissapatorn, V., Pereira, M. L., Paul, A. K., Wongtawan, T., & Boripun, R. (2023). Occurrence of multidrug resistance associated with extended-spectrum β‑lactamase and the biofilm forming ability of Escherichia coli in environmental swine husbandry. Comparative Immunology, Microbiology and Infectious Diseases, 103, Article 102093. https://doi.org/10.1016/j.cimid.2023.102093

Nakano, A., Nakano, R., Nishisouzu, R., Suzuki, Y., Horiuchi, S., Kikuchi-Ueda, T., Ubagai, T., Ono, Y., & Yano, H. (2021). Prevalence and Relatedness of mcr-1-Mediated Colistin-Resistant Escherichia coli Isolated From Livestock and Farmers in Japan. Frontiers in Microbiology, 12, Article 664931. https://doi.org/10.3389/fmicb.2021.664931

Oliveira, B. C., Santa Rosa, I. C. A., Dutra, M. C., Ferreira, F. N. A., Moreno, A. M., Moreno, L. Z., Silva, J. M. G., Garcia, S. K., & Fontes, D. O. (2024). Antimicrobial Use in Pig Farms in the Midwestern Region of Minas Gerais, Brazil. Antibiotics, 13(5), Article 403. https://doi.org/10.3390/antibiotics13050403

Oliveira, R. P., Silva, J. S., Silva, G. C., Rosa, J. N., Bazzolli, D. M. S., & Mantovani, H. C. (2024). Prevalence and characteristics of ESBL-producing Escherichia coli in clinically healthy pigs: implications for antibiotic resistance spread in livestock. Journal of Applied Microbiology, 135(4), Article lxae058. https://doi.org/10.1093/jambio/lxae058

Rabello, R. F., Bonelli, R. R., Penna, B. A., Albuquerque, J. P., Souza, R. M., & Cerqueira, A. M. F. (2020). Antimicrobial resistance in farm animals in Brazil: An update overview. Animals, 10(4), Article 552. https://doi.org/10.3390/ani10040552

Randall, L. P., Lemma, F., Rogers, J. P., Cheney, T. E. A., Powell, L. F., & Teale, C. J. (2014). Prevalence of extended-spectrum-β-lactamase-producing Escherichia coli from pigs at slaughter in the UK in 2013. Journal of Antimicrobial Chemotherapy, 69(11), 2947–2950. https://doi.org/10.1093/jac/dku258

Ribot, E. M., Fair, M. A., Gautom, R., Cameron, D. N., Hunter, S. B., Swaminathan, B., & Barrett, T. J. (2006). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathogens and Disease, 3(1), 59–67. https://doi.org/10.1089/fpd.2006.3.59

Santos, R. L., Davanzo, E. F. A., Palma, J. M., Castro, V. H. L., Costa, H. M. B., Dallago, B. S. L., Perecmanis, S., & Santana, Â. P. (2022). Molecular characterization and biofilm-formation analysis of Listeria monocytogenes, Salmonella spp., and Escherichia coli isolated from Brazilian swine slaughterhouses. PLoS ONE, 17(9), Article e0274636. https://doi.org/10.1371/journal.pone.0274636

Shafiq, M., Bilal, H., Permana, B., Xu, D., Cai, G., Li, X., Zeng, M., Yuan, Y., Jiao, X., & Yao, F. (2023). Characterization of antibiotic resistance genes and mobile elements in extended-spectrum β-lactamase-producing Escherichia coli strains isolated from hospitalized patients in Guangdong, China. Journal of Applied Microbiology, 134(7), Article lxad125. https://doi.org/10.1093/jambio/lxad125

Sodagari, H. R., & Varga, C. (2023). Evaluating Antimicrobial Resistance Trends in Commensal Escherichia coli Isolated from Cecal Samples of Swine at Slaughter in the United States, 2013–2019. Microorganisms, 11(4), Article 1033. https://doi.org/10.3390/microorganisms11041033

Spindola, M. G., Cunha, M. P. V., Moreno, L. Z., Amigo, C. R., Silva, A. P. S., Parra, B. M., Poor, A. P., Oliveira, C. H., Perez, B. P., Knobl, T., & Moreno, A. M. (2018). Genetic diversity, virulence genotype and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from sows. Veterinary Quarterly, 38(1), 79–87. https://doi.org/10.1080/01652176.2018.1519321

Tran, T. H. T., Everaert, N., & Bindelle, J. (2018). Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. Journal of Animal Physiology and Animal Nutrition, 102(1), 17–32. https://doi.org/10.1111/jpn.12666

Tseng, C.-H., Liu, C.-W., & Liu, P.-Y. (2023). Extended-Spectrum β-Lactamases (ESBL) Producing Bacteria in Animals. Antibiotics, 12(4), Article 661. https://doi.org/10.3390/antibiotics12040661

Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459), Article eaaw1944. https://doi.org/10.1126/science.aaw1944

Viana, C., Grossi, J. L., Sereno, M. J., Yamatogi, R. S., Bersot, L. S., Call, D. R., & Nero, L. A. (2020). Phenotypic and genotypic characterization of non-typhoidal Salmonella isolated from a Brazilian pork production chain. Food Research International, 137, Article 109406. https://doi.org/10.1016/j.foodres.2020.109406

Wang, X., Wang, Y., Zhou, Y., Li, J., Yin, W., Wang, S., Zhang, S., Shen, J., Shen, Z., & Wang, Y. (2018). Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerging Microbes and Infections, 7(1), 1–9. https://doi.org/10.1038/s41426-018-0124-z

Yamanaka, T., Funakoshi, H., Kinoshita, K., Iwashita, C., & Horikoshi, Y. (2020). CTX-M group gene distribution of extended spectrum beta-lactamase-producing Enterobacteriaceae at a Japanese Children’s hospital. Journal of Infection and Chemotherapy, 26(9), 1005–1007. https://doi.org/10.1016/j.jiac.2020.05.017

Yang, H., Wei, S.-H., Hobman, J. L., & Dodd, C. E. R. (2020). Antibiotic and metal resistance in Escherichia coli isolated from pig slaughterhouses in the United Kingdom. Antibiotics, 9(11), Article 746. https://doi.org/10.3390/antibiotics9110746

Yu, K., Huang, Z., Xiao, Y., Gao, H., Bai, X., & Wang, D. (2024). Global spread characteristics of CTX-M-type extended-spectrum β-lactamases: A genomic epidemiology analysis. Drug Resistance Updates, 73, Article 101036. https://doi.org/10.1016/j.drup.2023.101036

Zelendova, M., Dolejska, M., Masarikova, M., Jamborova, I., Vasek, J., Smola, J., Manga, I., & Cizek, A. (2020). CTX‐M‐producing Escherichia coli in pigs from a Czech farm during production cycle. Letters in Applied Microbiology, 71(4), 369–376. https://doi.org/10.1111/lam.13331

Zhou, W., Lin, R., Zhou, Z., Ma, J., Lin, H., Zheng, X., Wang, J., Wu, J., Dong, Y., Jiang, H., Yang, H., Yang, Z., Tang, B., & Yue, M. (2022). Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Frontiers in Microbiology, 13, Article 1018682. https://doi.org/10.3389/fmicb.2022.1018682

Downloads

Publicado

2025-09-10

Como Citar

Pereira, N., Silva, L. A. M., Rodrigues, R. A., Menezes, M. P. de, Moretto, L. F. A., Almeida, C. C. de, Rossi, G. A. M., Ávila, F. A. de, & Cardozo, M. V. (2025). Prevalence of Multidrug-resistant Escherichia coli in the Swine Production Chain: Implications for Food Safety in Brazilian Slaughterhouses . Food Science and Technology, 45. https://doi.org/10.5327/fst.477

Edição

Seção

Artigos Originais