Evaluation of antinutritional factors in the digestibility of proteins from Amaranthus caudatus seeds

Autores

  • Daniela Regiane da Silva Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0009-0005-8781-2830
  • Helon Guimarães Cordeiro Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0002-1866-8485
  • Fhelipe de Oliveira Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
  • Bruno Soares Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
  • Vinicius Tarabal Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0002-8736-8531
  • Paulo Afonso Granjeiro Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0003-0322-0861
  • José Antônio da Silva Universidade Federal de São João Del Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil. https://orcid.org/0000-0001-9134-1211

DOI:

https://doi.org/10.5327/fst.00467

Palavras-chave:

Amaranthus caudatus, seeds, in vitro digestibility, lectins, protease inhibitor, 2S albumin

Resumo

With population growth, the need for natural products with a good nutritional balance increases. Digestibility is an important factor that defines the nutritional diet and the quality of proteins. This work aims to evaluate the protein digestibility of Amaranth (Amaranthus caudatus) seeds. Amaranthus seed extracts showed inhibitory activity and hemagglutinating activity. In the simulating gastric fluid condition, hydrolysis products were detected, a 70 kDa band, which does not appear in the control. After the heating treatment, pepsin easily digested the 29 kDa lectin bands and a gradual digestion of the 12 and less than 10 kDa bands, probably the protease inhibitors. In the simulating intestinal fluid evaluation, without heating, the bands of 29, 12, and less than 10 kDa showed resistance to digestion. After heat treatment, the intensity of the corresponding bands 12 and those less than 10 kDa gradually decreased compared to the band of 29 kDa, which was digested quickly. Amaranthus seeds showed antinutritional factors, inhibitors, and lectins, demonstrating that at appropriate treatment and increased temperature it can improve more the efficient activities of digestive enzymes. Therefore, this work shows the importance of cooking for better protein absorption of Amaranthus seeds, making them a good source of amino acids.

Downloads

Não há dados estatísticos.

Referências

Adamcová, A., Laursen, K. H., Ballin, & N. Z. (2021). Lectin Activity in Commonly Consumed Plant-Based Foods: Calling for Method Harmonization and Risk Assessment. Foods, 10(11), Article 2796. https://doi.org/10.3390/foods10112796

Arcoverde, J. H. V., Carvalho, A. S., Neves, F. P. A., Dionízio, B. P., Pontual, E. V., Paiva, P. M. G., Napoleão, T. H., Correia, M. T. S, Silva, M. V., & Carneiro-da-Cunha, M. G. (2014). Screening of Caatinga plants as sources of lectins and trypsin inhibitors. Natural Product Research, 28(16), 1297–1301. https://doi.org/10.1080/14786419.2014.900497

Ashaolu, T. J., Greff, B., & Varga, L. (2025). The structure–function relationships and techno-functions of β-conglycinin. Food Chemistry, 462, Article 140950. https://doi.org/10.1016/j.foodchem.2024.140950

Bailey, H. M., Fanelli, N. S., & Stein, H. H. (2023). Effect of heat treatment on protein quality of rapeseed protein isolate compared with non-heated rapeseed isolate, soy and whey protein isolates, and rice and pea protein concentrates. Journal of the Science Food Agriculture, 103(14), 7251–7259. https://doi.org/10.1002/jsfa.12809

Bera, I., O'Sullivan, M., Flynn, D. & Shields, D. C. (2023). Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules, 28(7), Article 3204. https://doi.org/10.3390/molecules28073204

Bhat, Z. F., Morton, J. D., Bekhit, A. E.-D. A., Kumar, S., & Bhat, H. F. (2022). Non-thermal processing has an impact on the digestibility of the muscle proteins. Critical Reviews in Food Science and Nutrition, 62(28), 7773–7800. https://doi.org/10.1080/10408398.2021.1918629

Bobrovs, R., Basens, E. E., Drunka, L., Kanepe, I., Matisone, S., Velins, K. K., Andrianov, V., Leitis, G., Zelencova-Gopejenko, D., Rasina, D., Jirgensons, A., & Jaudzems, K. (2022). Exploring Aspartic Protease Inhibitor Binding to Design Selective Antimalarials. Journal of Chemical Information and Modeling, 62(13), 3263–3273. https://doi.org/10.1021/acs.jcim.2c00422

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Bueno-Díaz, C., Biserni, C., Martín-Pedraza, L., Las Heras, M., Blanco, C., Vázquez-Cortés, S., Fernández-Rivas, M., Batanero, E., Cuesta-Herranz, J., & Villalba, M. (2022). Association Between the Seed Storage Proteins 2S Albumin and 11S Globulin and Severe Allergic Reaction After Flaxseed Intake. Journal of Investigational Allergology and Clinical Immunology, 32(5), 375–382. https://doi.org/10.18176/jiaci.0713

Canoy, T. S., Wiedenbein, E. S., Bredie, W. L. P., Meyer, A. S., Wösten, H. A. B., & Nielsen, D. S. (2024). Solid-State Fermented Plant Foods as New Protein Sources. Annual Review of Food Science Technology, 15(1), 189–210. https://doi.org/10.1146/annurev-food-060721-013526

Capraro, J., Benedetti, S., Heinzl, G. C., Scarafoni, A., & Magni, C. (2021). Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. International Journal of Molecular Science, 22(7), Article 3543. https://doi.org/10.3390/ijms22073543

Carrillo, C., Cordoba-Diaz, D., Cordoba-Diaz, M., Girbés, T., & Jiménez, P. (2017). Effects of temperature, pH and sugar binding on the structures of lectins ebulin f and SELfd. Food Chemistry, 220, 324–330. https://doi.org/10.1016/j.foodchem.2016.10.007

Carrillo, J. B., Gomez-Casati, D. F., Busi, M. V., & Martín, M. (2017). Development of fast and simple chromogenic methods for glucan phosphatases in-gel activity assays. Analytical Biochemistry, 517, 36–39. https://doi.org/10.1016/j.ab.2016.11.005

Castro, A. H. F., Tavares, H. S., Pereira, S. R. F., Granjeiro, P. A., Silva, J. A., & Galdino, A. S. (2018). Production and characterization of lectin from Bauhinia holophylla (Fabaceae:Cercideae) calli. Plant cell Tissue and Organ Culture, 134, 423–432. https://doi.org/10.1007/s11240-018-1432-7

Cordeiro, I. H., Lima, N. M., Scherrer, E. C., Carli, G. P., Andrade, T. J. A. S., Castro, S. B. R., Oliveira, M. A. L., Alves, C. C. S., & Carli, A. P. (2024). Protease inhibitors characterisation by SDS-PAGE and MALDI-TOF from Alocasia macrorrhizos and their modulation of macrophage immune-inflammatory properties. Natural Product Research, 38(19), 3454–3459. https://doi.org/10.1080/14786419.2023.2246278

Dang, L., Rougé, P., & Van Damme, E. J. M. (2017). Amaranthin-Like Proteins with Aerolysin Domains in Plants. Frontiers in Plant Science, 8, Article 1368. https://doi.org/10.3389/fpls.2017.01368

Dutta, M., Dineshkumar, R., Nagesh, C. R., Lakshmi, Y. D., Lekhak, B., Bansal, N., Goswami, S., Kumar, R. R., Kundu, A., Mandal, P. K., Arora, B., Raje, R. S., Mandal, S., Yadav, A., Tyagi, A., Ramesh, S. V., Prashat, G. R., & Vinutha., T. (2024). Exploring protein structural adaptations and polyphenol interactions: Influences on digestibility in pigeon pea dal and whole grains under heat and germination conditions. Food Chemistry, 460(Part 1), Article 140561. https://doi.org/10.1016/j.foodchem.2024.140561

Feijoo-Coronel, M. L., Mendes, B., Ramírez, D., Peña-Varas, C., Monteros-Silva, N. Q. E., Proaño-Bolaños, C., Oliveira, L. C., Lívio, D. F., Silva, J. A., Silva, J. M. S. F., Pereira, M. G. A. G., Rodrigues, M. Q. R. B., Teixeira, M. M., Granjeiro, P. A., Patel, K., Vaiyapuri, S., & Almeida, J. R. (2024). Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics, 13(1), Article 78. https://doi.org/10.3390/antibiotics13010078

Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children’s Fund, World Food Programme, & World Health Organization. (2023). The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. FAO. https://doi.org/10.4060/cc3017en

Gueugneau, M. (2023). The value of dietary plant protein in older people. Current Opinion in Clinical Nutrition and Metabolic Care, 26(1), 3–7. https://doi.org/10.1097/mco.0000000000000884

Hasan, I., Rahman, S. N., Islam, M. M., Ghosh, S. K., Mamun, M. R., Uddin, M. B., Shaha, R. K., & Kabir, S. R. (2021). A N-acetyl-D-galactosamine-binding lectin from Amaranthus gangeticus seeds inhibits biofilm formation and Ehrlich ascites carcinoma cell growth in vivo in mice. International Journal of Biological Macromolecules, 181, 928–936. https://doi.org/10.1016/j.ijbiomac.2021.04.052

He, S., Simpson, B. K., Ngadi, M. O., & Ma, Y. (2015). In vitro studies of the digestibility of lectin from black turtle bean (Phaseolus vulgaris). Food Chemistry, 173, 397–404. https://doi.org/10.1016/j.foodchem.2014.10.045

Idries, A. H., Naser, E. H., Dafalla, M. B., Elmubarak, S. A. A., Abdelrahim, Y. E., Abdalrhman, E. A., Alwali, S. M., Ahmed, B. M., Yousef, B. A., Ebrahim, R. M. A., Abdellatif, A. O., Awadallah, A. K. E., Osman, M. E. M., & Konozy, E. H. E. (2024). Biological activity and characterization of leaf and seed lectins from Terminalia brownii: Insights into their analgesic and antiulcer properties. Heliyon, 10(20), Article e39351

Jan, N., Hussain, S. Z., Naseer, B., & Bhat, T. A. (2023). Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chemistry: X, 18, Article 100687. https://doi.org/10.1016/j.fochx.2023.100687

Kårlund, A., Paukkonen, I., Gómez-Gallego, C., & Kolehmainen, M. (2021). Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare, 9(8), Article 1002. https://doi.org/10.3390/healthcare9081002

Katsube-Tanaka, T., & Monshi, F. I. (2022). Characterization of 2S albumin allergenic proteins for anaphylaxis in common buckwheat. Food Chemistry: Molecular Sciences, 5, Article 100127. https://doi.org/10.1016/j.fochms.2022.100127

Kong, X., Li, Y., & Liu, X. (2022). A review of thermosensitive antinutritional factors in plant-based foods. Journal of Food Biochemistry, 46(9), Article e14199. https://doi.org/10.1111/jfbc.14199

Krauchenco, S., Nagem, R. A. P., Silva, J. A., Marangoni, S., & Polikarpov, I. (2004). Three-dimensional structure of an unusual Kunitz (STI) type trypsin inhibitor from Copaifera langsdorffii. Biochimie, 86(3), 167–172. https://doi.org/10.1016/j.biochi.2004.03.004

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0

Lang, G.-H., Kagiya, Y., & Kitta, K. (2015). Multiplex comparison of the digestibility of allergenic and non-allergenic proteins in rice grains by in vitro digestion. Food Chemistry, 168, 606–614. https://doi.org/10.1016/j.foodchem.2014.07.089

Lang, Y., Li, B., Gong, E., Shu, C., Si, X., Gao, N., Zhang, W., Cui, H., & Meng, X. (2021). Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chemistry, 334, Article 127526. https://doi.org/10.1016/j.foodchem.2020.127526

Lao, Y., Ye, Q., Wang, Y., Vongsvivut, J., & Selomulya, C. (2023). Quantifying the effects of pre-roasting on structural and functional properties of yellow pea proteins. Food Research International, 172, Article 113180. https://doi.org/10.1016/j.foodres.2023.113180

Lee, S., Jo, K., Jeong, S.-K. C., Jeon, H., Kim, Y.-J., Choi, Y.-S., & Jung, S. (2024). Heat-induced gelation of egg white proteins depending on heating temperature: Insights into protein structure and digestive behaviors in the elderly in vitro digestion model. International Journal of Biological Macromolecules, 262(Part 2), Article 130053. https://doi.org/10.1016/j.ijbiomac.2024.130053

Luz, A. B. S., Medeiros, A. F., Medeiros, G. C. B. S., Piuvezam, G., Passos, T. S., & Morais, A. H. A. (2024). Experimental protocols used to mimic gastrointestinal protein digestion: a systematic review. Nutrients, 16(15), Article 2398. https://doi.org/10.3390/nu16152398

Mangena, P. (2022). Pleiotropic effects of recombinant protease inhibitors in plants. Frontiers in Plant Science, 13, Article 994710. https://doi.org/10.3389/fpls.2022.994710

Naser, E. H., Idries, A. H., Elmubarak, S. A. A., Dafalla, M. B., Abdelrahim, Y. E., Abdalrhman, E. A., Ahmed, B. M., Osman, M. E. M., Awadallah, A. K. E., Ebrahim, R. M. A., Abdellatif, A. O., Saad, H. A., & Konozy, E. H. E. (2024). Isolation, purification, and characterization of lectins from medicinal plant Combretum glutinosum seeds endowed with analgesic and antiulcer properties. Biochimie, 227(Part A), 273–285. https://doi.org/10.1016/j.biochi.2024.08.003

Ohanenye, I. C., Ekezie, F.-G. C., Sarteshnizi, R. A., Boachie, R. T., Emenike, C. U., Sun, X., Nwachukwu, I. D., & Udenigwe, C. C. (2022). Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies. Foods, 11(15), Article 2299. https://doi.org/10.3390/foods11152299

Olías, R., Rayner, T., Clemente, A., & Domoney, C. (2023). Combination of three null mutations affecting seed protein accumulation in pea (Pisum sativum L.) impacts positively on digestibility. Food Research International, 169, Article 112825. https://doi.org/10.1016/j.foodres.2023.112825

Osborne, T. B. (1924). Monographs on Biochemistry: The vegetable proteins (2nd ed.). Longmans, Green and Co.

Pesoti, A., Oliveira, B. M., Oliveira, A. C., Pompeu, D. G., Gonçalves, D. B., Marangoni, S., Silva, J. A., & Granjeiro, P. A. (2015). Extraction, purification and characterization of inhibitor of trypsin from Chenopodium quinoa seeds. Food Science and Technology, 35(4), 588–597. https://doi.org/10.1590/1678-457X.6655

Pompeu, D. G., Carvalho, A. S., Costa, O. F., Galdino, A. S., Gonçalves, D. B., Silva, J. A., & Granjeiro, P. A. (2014). Fatores antinutricionais e digestibilidade “in vitro” de folhas de Pereskia aculeata Miller. BBR - Biochemistry and Biotechnology Reports, 3(1), 1–9. https://doi.org/10.5433/2316-5200.2014v3n1p1

Pompeu, D. G., Cordeiro, H. G., Tonelli, F. C. P., Godin, A. M., Melo, I. S. F., Matsui, T. C., Rodrigues, F. F., Silva, J. A., Coelho, M. M., Machado, R. R., & Granjeiro, P. A. (2022). Chenopodin as an anti-inflammatory compound. Natural Product Research, 36(17), 4429–4432. https://doi.org/10.1080/14786419.2021.1980791

Pompeu, D. G., Mattioli, M. A., Ribeiro, R. I. M. A., Gonçalves, D. B., Magalhães, J. T., Marangoni, S., Silva, J. A., & Granjeiro, P. A. (2015). Purification, partial characterization and antimicrobial activity of Lectin from Chenopodium Quinoa seeds. Food Science and Technology, 35(4), 696–703. https://doi.org/10.1590/1678-457X.6823

Pompeu, D.-G., Pompeu, L.-G., Policarpo-Tonelli, F.-C., Moreira-dos-Santos, D., da Silva, J.-A., Granjeiro, P. A., (2016). Extraction, Purification, partial Characterization and Antimicrobial Activity of a Protease Inhibitor from Albizia niopoides seeds. International Journal of Advanced Scientific Research and Management, 1(1), 27–34. https://www.researchgate.net/publication/318531561_EXTRACTION_PURIFICATION_PARTIAL_CHARACTERIZATION_AND_ANTIMICROBIAL_ACTIVITY_OF_A_PROTEASE_INHIBITOR_FROM_Albizia_niopoides_SEEDS

Pulvento, C., Sellami, M. H., & Lavini, A. (2022). Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. Journal of the Science Food and Agriculture, 102(12), 5022–5033. https://doi.org/10.1002/jsfa.11088

Rawdkuen, S., D'Amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods, 11(13), Article 1869. https://doi.org/10.3390/foods11131869

Resendiz-Otero, M. F., Bernardino-Nicanor, A., Lugo-Magaña, O., Betanzos-Cabrera, G., González-Cruz, L., Morales-González, J. A., Acosta-García, G., Fernández-Martínez, E., Salazar-Campos, A., & Valadez-Vega, C. (2024). Purification, Structural Characterization, and Bioactivity of Amaranthus hypochondriacus Lectin. Molecules, 29(21), Article 5101. https://doi.org/10.3390/molecules29215101

Rodríguez-Sifuentes, L., Marszalek, J. E., Chuck-Hernández, C., & Serna-Saldívar, S. O. (2020). Legumes Protease Inhibitors as Biopesticides and their Defense Mechanisms against Biotic Factors. International Journal of Molecular Sciences, 21(9), Article 3322. https://doi.org/10.3390/ijms21093322

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), Article 6. https://doi.org/10.1186/s43014-020-0020-5

Silva, J. A., Pompeu, D. G., Costa, O. F., Gonçalves, D. B., Spehar, C. R., Marangoni, S., & Granjeiro, P. A. (2015). The importance of heat against antinutritional factors from Chenopodium quinoa seeds. Food Science and Technology, 35(1), 74–82. https://doi.org/10.1590/1678-457X.6427

Silva, J. A., Pompeu, D. G., Smolka, M. B., Gozzo, F. C., Comar Jr., M., Eberlin, M. N., & Granjeiro, P. A., & Marangoni, S. (2015). Primary Structure of a Trypsin Inhibitor (Copaifera langsdorffii Trypsin Inhibitor-1) Obtained from C. langsdorffii Seeds. Journal of Biomolecular Techniques, 26(3), 90–102. https://doi.org/10.7171/jbt.15-2603-002

Silva, J. K., Veras, A. C. C., Sousa, S. M., Albuquerque, J. S. S., Ribeiro, F. P. B., Lima, N. K. S., Nascimento, L. B. S., Alves, R. R. V., Aires, R. S., Coelho, L. C. B. B., Napoleão, T. H., Paiva, P. M. G., Paixão, A. D., & Vieira, L. D. (2024). The water extract and the lectin WSMoL from the seeds of Moringa oleifera prevent the hypertension onset by decreasing renal oxidative stress. Anais da Academia Brasileira de Ciências, 96(4), Article e20231266. https://doi.org/10.1590/0001-3765202420231266

Silvestrini, V. C., Gonçalves, D. B., Granjeiro, P. A., Silva, J. A. (2017). Anti-nutritional factors and digestibility of protein in Cayocar brasiliense seeds. Food Science and Technology, 37(4), 632–639. https://doi.org/10.1590/1678-457X.28716

Souza, P. F. N. (2020). The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. International Journal of Biological Macromolecules, 164, 4638–4649. https://doi.org/10.1016/j.ijbiomac.2020.09.049

Sun, N., Liu, Y., Liu, K., Wang, S., Liu, Q., & Lin, S. (2022). Gastrointestinal fate of food allergens and its relationship with allergenicity. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3376–3404. https://doi.org/10.1111/1541-4337.12989

Tang, J., Wichers, H. J., & Hettinga, K. A. (2022). Heat-induced unfolding facilitates plant protein digestibility during in vitro static infant digestion. Food Chemistry, 375, Article 131878. https://doi.org/10.1016/j.foodchem.2021.131878

Van Damme, E. J. (2014). History of plant lectin research. In J. Hirabayashi (Ed.), Lectins: Methods and Protocols (Volum 1200, pp. 3–13). Humana Press. https://doi.org/10.1007/978-1-4939-1292-6_1

Vasconcelos, I. M., & Oliveira, J. T. A. (2004). Antinutritional properties of plant lectins. Toxicon, 44(4), 385–403. https://doi.org/10.1016/j.toxicon.2004.05.005

Vishvakarma, R., & Mishra, A. (2022). Characterization of a Novel Protease Inhibitor from the Edible Mushroom Agaricus bisporus. Protein and Peptide Letters, 29(5), 460–472. https://doi.org/10.2174/0929866529666220405161903

Wang, K., Crevel, R. W. R., & Mills, E. N. C. (2022). Assessing protein digestibility in allergenicity risk assessment: A comparison of in silico and high throughput in vitro gastric digestion assays. Food and Chemical Toxicology, 167, Article 113273. https://doi.org/10.1016/j.fct.2022.113273

Williamson, E., Ross, I. L., Wall, B. T., & Hankamer, B. (2024). Microalgae: potential novel protein for sustainable human nutrition. Trends in Plant Science, 29(3), 370–382. https://doi.org/10.1016/j.tplants.2023.08.006

Zhang, J., Wang, J., Li, M., Guo, S., & Lv, Y. (2022). Effects of heat treatment on protein molecular structure and in vitro digestion in whole soybeans with different moisture content. Food Research International, 155, Article 111115. https://doi.org/10.1016/j.foodres.2022.111115

Zhang, K., Wen, Q., Wang, Y., Li, T., Nie, B., & Zhang, Y. (2022). Study on the in vitro digestion process of green wheat protein: Structure characterization and product analysis. Food Science and Nutrition, 10(10), 3462–3474. https://doi.org/10.1002/fsn3.2947

Zhou, H., Tan, Y., & McClements, D. J. (2023). Applications of the INFOGEST in vitro digestion model to foods: a review. Annual Review Food Science and Technology, 14, 135–156. https://doi.org/10.1146/annurev-food-060721-012235

Zhu, F. (2023). Amaranth proteins and peptides: Biological properties and food uses. Food Research International, 164, Article 112405. https://doi.org/10.1016/j.foodres.2022.112405

Downloads

Publicado

2025-07-24

Como Citar

Silva, D. R. da, Cordeiro, H. G., Oliveira, F. de, Soares, B., Tarabal, V., Granjeiro, P. A., & Silva, J. A. da. (2025). Evaluation of antinutritional factors in the digestibility of proteins from Amaranthus caudatus seeds. Food Science and Technology, 45. https://doi.org/10.5327/fst.00467

Edição

Seção

Artigos Originais