Changes in tra catfish flesh meat (Pangasianodon hypophthalmus) during refrigerator storage and the lipid properties of flesh meat

Autores

DOI:

https://doi.org/10.5327/fst.14723

Palavras-chave:

tra catfish flesh meat, oil, fatty acid, solvents, refrigerator storage

Resumo

In this study, the lipid properties of tra catfish flesh meat (Pangasianodon hypophthalmus) during refrigerator storage as well as the properties of oil extracted from tra catfish flesh meat were investigated. The quality of the samples was maintained, with lipid content and peroxide value falling within the acceptable range after 15 days of storage. The yield of oil extracted using isopropanol:hexane at a ratio of 2:3 was higher (56.2%) than that extracted using ethanol:hexane at a different ratio. Isopropanol:hexane (2:3) also showed the highest L* (lightness/brightness) value (33.35) and the lowest b* (yellowness/blueness) value (7.35). The polyunsaturated fatty acid levels as well as the omega 3 and 6 fatty acid levels of oil were highest in this solvent at a ratio of 2:3. Thus, tra catfish flesh meat could be used as a material for lipid extraction.

Downloads

Não há dados estatísticos.

Referências

American Oil Chemists Society (AOCS). (2009). AOCS Official Method Cc 13e92 (09). Lovibond (per ISO Standard). Official Methods and Recommended Practices of the American Oil Chemists Society (6th ed.). AOCS.

Bejaoui, S., Ghribi, F., Chetoui, I., Aouini, F., Bouaziz, M., Houas-Gharsallah, I., & Soudani, N. (2021). Effect of storage temperature and time on the fatty acids and nutritional quality of the commercial mussel (Mytilus galloprovincialis). Journal of Food Science and Technology, 58(9), 3493-3503. https://doi.org/10.1007/s13197-021-05008-5

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099

Bustabad, O. M. (1999). Weight loss during freezing and the storage of frozen meat. Journal of Food Engineering, 41(1), 1-11. https://doi.org/10.1016/S0260-8774(99)00065-5

Food and Agriculture Organization (FAO). (2005). Nutritional elements of Fish. FAO.

Deepika, D., Vegneshwaran, V.R., Julia, P., Sukhinder, K.C., Sheila, T., Heather, M., & Wade, M. (2014). Investigation on Oil Extraction Methods and Its Influence on Omega-3 Content from Cultured Salmon. Journal of Food Processing and Technology, 5(12), 401-413.

Goulas, A. E., & Kontominas, M. G. (2007). Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes. Food Chemistry, 100(1), 287-296. https://doi.org/10.1016/j.foodchem.2005.09.045

Haard, N. F. (1992). Control of chemical composition and food quality attributes of cultured fish. Food Research International, 25(4), 289-307. https://doi.org/10.1016/0963-9969(92)90126-P

Haliloglu, H. B., Bayir, A., Necdet Sirkecioglu, A., Mevlut Aras, N., & Atamanalp, M. (2004). Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chemistry, 86(1), 55-59. https://doi.org/10.1016/j.foodchem.2003.08.028

Halim, R., Gladman, B., Danquah, M. K., & Webley, P. A. (2011). Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1), 178-185. https://doi.org/10.1016/j.biortech.2010.06.136

Ho, B. T., & Paul, D. R. (2009). Fatty acid profile of tra catfish (Pangasius hypophthalmus) compared to Atlantic salmon (Salmo solar) and Asian seabass (Lates calcarifer). International Food Research Journal, 16(4), 501-506.

Iberahim, N. I., & Tan, B. C. (2020). Hexane-isopropanol extraction and quality assessment of omega-3 fish oil from Atlantic salmon (Salmo salar). In IOP Conference Series: Materials Science and Engineering (Vol. 932, No. 1, p. 012038). IOP Publishing.

Men, L. T., Thanh, V. C., Hirata, Y., & Yamasaki, S. (2005). Evaluation of the genetic diversities and the nutritional values of the Tra (Pangasius hypophthalmus) and the Basa (Pangasius bocourti) catfish cultivated in the Mekong river delta of Vietnam. Asian-Australian Journal of Animal Sciences, 18(5), 671-676. https://doi.org/10.5713/ajas.2005.671

Nguyen, M. V., Karnue, S., & Kakooza, D. (2023). Effect of packaging method and storage temperature on the sensory quality and lipid stability of fresh snakehead fish (Channa striata) fillets. Food Science and Technology, 43, e116222. https://doi.org/10.1590/fst.116222

Noriega-Rodríguez, J. A., Ortega-García, J., Angulo-Guerrero, O., García, H. S., Medina-Juárez, L. A., & Gámez-Meza, N. (2009). Oil production from sardine (Sardinops sagax caerulea) Producción de aceite a partir de sardina (Sardinops sagax caerulea). CyTA-Journal of Food, 7(3), 173-179. https://doi.org/10.1080/19476330903010243

Pacheco‐Aguilar, R., Lugo‐Sánchez, M. E., & Robles‐Burgueño, M. R. (2000). Postmortem biochemical and functional characteristic of Monterey sardine muscle stored at 0°C. Journal of Food Science, 65(1), 40-47. https://doi.org/10.1111/j.1365-2621.2000.tb15953.x

Li, P., Yang, H., Zhu, Y., Wang, Y., Bai, D., Dai, R., Ren, X., Yang, H., & Ma, L. (2016). Influence of washing and cold storage on lipid and protein oxidation in catfish (Clarias lazera) surimi. Journal of Aquatic Food Product Technology, 25(6), 790-801. https://doi.org/10.1080/10498850.2014.931898

Sahena, F., Zaidul, I. S. M., Jinap, S., Jahurul, M. H. A., Khatib, A., & Norulaini, N. A. N. (2010). Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. Journal of Food Engineering, 99(1), 63-69. https://doi.org/10.1016/j.jfoodeng.2010.01.038

Sathivel, S., Prinyawiwatkul, W., Grimm, C. C., King, J. M., & Lloyd, S. (2002). FA composition of crude oil recovered from catfish viscera. Journal of the American Oil Chemists' Society, 79(10), 989-992. https://doi.org/10.1007/s11746-002-0592-5

Steiner-Asiedu, M., Julshamn, K., & Lie, Ø. (1991). Effect of local processing methods (cooking, frying and smoking) on three fish species from Ghana: Part I. Proximate composition, fatty acids, minerals, trace elements and vitamins. Food Chemistry, 40(3), 309-321. https://doi.org/10.1016/0308-8146(91)90115-5

Takagi, T., Mitsuno, Y., & Masumura, M. (1978). Determination of peroxide value by the colorimetric iodine method with protection of iodide as cadmium complex. Lipids, 13(2), 147-151. https://doi.org/10.1007/BF02533257

Tenyang, N., Womeni, H. M., Tiencheu, B., Villeneuve, P., & Linder, M. (2017). Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (Arius maculatus) commercialized in Cameroon. Grasas y Aceites, 68(1), 177-177. https://doi.org/10.3989/gya.0335161

Vietnan Association of Seafood Exporters and Producers (VASEP) (2022). Infographic: Pangasius export in the first 11 months of 2022 (vasep.com.vn). Retrieved from https://vasep.com.vn/san-pham-xuat-khau/infographic-xuat-khau-ca-tra-11-thang-dau-nam-2022-25956.html

Weng, W. Y., Osako, K., & Tanaka, M. (2009). Oxygen permeability and antioxidative properties of edible surimi films. Fisheries Science, 75, 233-240. https://doi.org/10.1007/s12562-008-0024-6

Downloads

Publicado

2023-07-20

Como Citar

MINH, T. L. T., Do QUYNH, N., & NGUYEN, M. (2023). Changes in tra catfish flesh meat (Pangasianodon hypophthalmus) during refrigerator storage and the lipid properties of flesh meat. Food Science and Technology, 43. https://doi.org/10.5327/fst.14723

Edição

Seção

Artigos Originais