Fermented milk supplemented with pequi oil microcapsules: effects on physicochemical properties, stability, in vitro digestion, and bioaccessibility

Autores

DOI:

https://doi.org/10.5327/fst.101822

Palavras-chave:

complex coacervation, Caryocar coriaceum, beta-carotene, biopolymers, dairy products

Resumo

Pequi oil presents high levels of unsaturated fatty acids and beta-carotene and has been used for nutraceutical purposes. Microcapsules can improve the protection of bioactive compounds in pequi oil and mask the inherent smell and taste for food applications. However, the stability of the microencapsulated oil and its influence on the product characteristics need to be investigated. This work evaluated the impact of pequi oil microcapsules on the physicochemical characteristics of fermented milk and other aspects of stability, digestion, and bioaccessibility via the analysis of beta-carotene present in the oil. During 28 days of storage, the pH values decreased from 4.5 to 4.32 for all fermented milk. Syneresis values decreased (<50%) due to water retention caused by the biopolymers on the microcapsules. Microencapsulation promoted an improvement in oil stability and a gradual release for 120 min, which allowed a better condition for beta-carotene quantification in the micellar phase and resulted in better bioaccessibility. Thus, the microcapsules positively influenced the physicochemical properties of the fermented milk and improved oil bioaccessibility aspects.

Downloads

Não há dados estatísticos.

Referências

Akgün, D., Gültekin-Özgüven, M., Yücetepe, A., Altin, G., Gibis, M., Weiss, J., & Özçelik, B. (2019). Stirred-type yoghurt incorporated with sour cherry extract in chitosan-coated liposomes. Food Hydrocolloids, 101, 105532. https://doi.org/10.1016/j.foodhyd.2019.105532

Baba, W. N., Jan, K., Punoo, H. A., Wani, T. A., Dar, M. M., & Masoodi, F. A. (2018). Techno-functional properties of yoghurts forti fi ed with walnut and fl axseed oil emulsions in guar gum. LWT - Food Science and Technology, 92, 242-249. https://doi.org/10.1016/j.lwt.2018.02.007

Brasil (2005). Resolução RDC nº 269, de 22 de setembro de 2005. Regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitamina e minerais. Agência Nacional de Vigilância Sanitária.

Campo, C., Assis, R. Q., Silva, M. M., Costa, T. M. H., Paese, K., Guterres, S. S., Rios, A. O., & Flôres, S. H. (2019). Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chemistry, 301, 125230. https://doi.org/10.1016/j.foodchem.2019.125230

Chen, L., Liang, R., Yokoyama, W., Alves, P., Pan, J., & Zhong, F. (2020). Effect of the co-existing and excipient oil on the bioaccessibility of β-carotene loaded oil-free nanoparticles. Food Hydrocolloids, 106, 105847. https://doi.org/10.1016/j.foodhyd.2020.105847

Comunian, T. A., Chaves, I. E., Thomazini, M., Moraes, I. C. F., Ferro-Furtado, R., de Castro, I. A., & Favaro-Trindade, C. S. (2017). Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chemistry, 237, 948-956. https://doi.org/10.1016/j.foodchem.2017.06.071

Dai, S., Corke, H., & Shah, N. P. (2016). Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. Journal of Dairy Science, 99(9), 7063-7074. https://doi.org/10.3168/jds.2016-11131

Deshwal, G. K., Tiwari, S., Kumar, A., Raman, R. K., & Kadyan, S. (2021). Review on factors affecting and control of post-acidification in yoghurt and related products. Trends in Food Science and Technology, 109, 499-512. https://doi.org/10.1016/j.tifs.2021.01.057

Donhowe, E. G., Flores, F. P., Kerr, W. L., Wicker, L., & Kong, F. (2014). Characterization and invitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology, 57(1), 42-48. https://doi.org/10.1016/j.lwt.2013.12.037

Estrada, J. D., Boeneke, C., Bechtel, P., & Sathivel, S. (2011). Developing a strawberry yogurt fortified with marine fish oil. Journal of Dairy Science, 94(12), 5760-5769. https://doi.org/10.3168/jds.2011-4226

Geng, M., Wang, Z., Qin, L., Taha, A., Du, L., Xu, X., Pan, S., & Hu, H. (2022). Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocolloids, 123, 107146. https://doi.org/10.1016/j.foodhyd.2021.107146

Gharibzahedi, S. M. T., & Chronakis, I. S. (2018). Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products. Food Chemistry, 245, 620-632. https://doi.org/10.1016/j.foodchem.2017.10.138

González-Monje, P., Ayala García, A., Ruiz-Molina, D., & Roscini, C. (2021). Encapsulation and sedimentation of nanomaterials through complex coacervation. Journal of Colloid and Interface Science, 589, 500-510. https://doi.org/10.1016/j.jcis.2020.12.067

Grenha, A., Guerreiro, F., Lourenço, J. P., Lopes, J.. A., & Câmara-Martos, F. (2023). Microencapsulation of selenium by spray-drying as a tool to improve bioacessibility in food matrix. Food Chemistry, 402, 134463. https://doi.org/10.1016/j.foodchem.2022.134463

Gumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends in Food Science and Technology, 110, 267-279. https://doi.org/10.1016/j.tifs.2021.02.016

Guo, Q., Bayram, I., Shu, X., Su, J., Liao, W., Wang, Y., & Gao, Y. (2022). Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chemistry, 367, 130726. https://doi.org/10.1016/j.foodchem.2021.130726

Keršienė, M., Jasutienė, I., Eisinaitė, V., Pukalskienė, M., Venskutonis, P. R., Damulevičienė, G., Knašienė, J., Lesauskaitė, V., & Leskauskaitė, D. (2020). Development of a high-protein yoghurt-type product enriched with bioactive compounds for the elderly. LWT - Food Science and Technology, 131, 109820. https://doi.org/10.1016/j.lwt.2020.109820

Lima, A. C., Barros, M. E. S., Souza, A. C. R. de, Araújo, Í. M. da S., Magalhães, H. C. R., & Pacheco, G. M. (2019). Obtenção do Óleo da Polpa de Pequi por Separação Física Utilizando-se Centrifugação. Embrapa Comunicado Técnico, 254, 1-6.

Magalhães, F. S., Sá, M. S. M., Cardoso, V. L., & Reis, M. H. M. (2019). Recovery of phenolic compounds from pequi (Caryocar brasiliense Camb.) fruit extract by membrane filtrations: Comparison of direct and sequential processes. Journal of Food Engineering, 257, 26-33. https://doi.org/10.1016/j.jfoodeng.2019.03.025

Muhoza, B., Qi, B., Harindintwali, J. D., Farag Koko, M. Y., Zhang, S., & Li, Y. (2021). Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocolloids, 124(Part B), 107239. https://doi.org/10.1016/j.foodhyd.2021.107239

Nascimento, M. A., Silva, L. C., Mendes, L. G., Furtado, R. F., Costa, J. M. C., Biswas, A., Cheng, H. N., & Alves, C. R. (2020). Pequi oil microencapsulation by complex coacervation using gelatin-cashew gum. International Journal of Food Studies, 9, SI97-SI109. https://doi.org/10.7455/ijfs/9.SI.2020.a8

Niu, B., Shao, P., Feng, S., Qiu, D., & Sun, P. (2020). Rheological aspects in fabricating pullulan-whey protein isolate emulsion suitable for electrospraying: Application in improving β-carotene stability. LWT - Food Science and Technology, 129, 109581. https://doi.org/10.1016/j.lwt.2020.109581

Ozturkoglu-Budak, S., Akal, C., & Yetisemiyen, A. (2016). Effect of dried nut fortification on functional, physicochemical, textural, and microbiological properties of yogurt. Journal of Dairy Science, 99(11), 8511-8523. https://doi.org/10.3168/jds.2016-11217

Pinto, M. R. M. R., Paula, D. de A., Alves, A. I., Rodrigues, M. Z., Vieira, É. N. R., Fontes, E. A. F., & Ramos, A. M. (2018). Encapsulation of carotenoid extracts from pequi (Caryocar brasiliense Camb) by emulsification (O/W) and foam-mat drying. Powder Technology, 339, 939-946. https://doi.org/10.1016/j.powtec.2018.08.076

Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. Z. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59-66. https://doi.org/10.1016/j.foodchem.2016.09.194

Savaiano, D. A., & Hutkins, R. W. (2021). Yogurt, cultured fermentedmilk, and health: a systematic review. Nutrition Reviews, 79(5), 599-614. https://doi.org/10.1093/nutrit/nuaa013

Šeregelj, V., Pezo, L., Šovljanski, O., Lević, S., Nedović, V., Markov, S., Tomić, A., Čanadanović-Brunet, J., Vulić, J., Šaponjac, V. T., & Ćetković, G. (2021). New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT - Food Science and Technology, 138, 110732. https://doi.org/10.1016/j.lwt.2020.110732

Silva, L. C., Castelo, R. M., Magalhães, H. C. R., Furtado, R. F., Cheng, H. N., Biswas, A. & Alves, C. R. (2022). Characterization and controlled release of pequi oil microcapsules for yogurt application. LWT - Food Science and Technology, 157, 113105. https://doi.org/10.1016/j.lwt.2022.113105

Silva, L. C., Nascimento, M. A., Mendes, L. G., Furtado, R. F., Costa, J. M. C., & Cardoso, A. L. H. (2018). Optimization of cashew gum and chitosan for microencapsulation of pequi oil by complex coacervation. Journal of Food Processing and Preservation, 42(3), e13538. https://doi.org/10.1111/jfpp.13538

Tan, P. Y., Tan, T. B., Chang, H. W., Tey, T., Chan, E. S., Lai, O. M., Baharin, B. S., Nehdi, I. A., & Tan, C. P. (2018). Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules. Food Chemistry, 241, 79-85. https://doi.org/10.1016/j.foodchem.2017.08.075

Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2017). Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 66, 71-81. https://doi.org/10.1016/j.foodhyd.2016.12.017

Xavier, A. A. O., Carvajal-Lérida, I., Garrido-Fernández, J., & Pérez-Gálvez, A. (2018). In vitro bioaccessibility of lutein from cupcakes fortified with a water-soluble lutein esters formulation. Journal of Food Composition and Analysis, 68, 60-64. https://doi.org/10.1016/j.jfca.2017.01.015

Yu, D., Kwon, G., An, J., Lim, Y., Jhoo, J., & Chung, D. (2021). Influence of prebiotic biopolymers on physicochemical and sensory characteristics of yoghurt. International Dairy Journal, 115, 104915. https://doi.org/10.1016/j.idairyj.2020.104915

Downloads

Publicado

2023-07-10

Como Citar

SILVA, L. C. da, MAGALHÃES, H. C. R., FREIRE, G. A., ALEXANDRE, J. de B., CASTELO, R. M., MUNIZ, C. R., FURTADO, R. F., & ALVES, C. R. (2023). Fermented milk supplemented with pequi oil microcapsules: effects on physicochemical properties, stability, in vitro digestion, and bioaccessibility. Food Science and Technology, 43. https://doi.org/10.5327/fst.101822

Edição

Seção

Artigos Originais