Mechanical properties and integrity of stored corn grains after continuous and intermittent drying

Autores

DOI:

https://doi.org/10.5327/fst.21323

Palavras-chave:

Zea mays L., rest time, electrical conductivity, compressive strength

Resumo

This study aimed to evaluate the influence of continuous and intermittent drying during the storage time on mechanical properties and integrity of corn. For intermittent drying, five rest times (0, 4, 8, 12, and 16 h) and four storage times (0, 90, 180, and 270 days) were used. The corn grains harvested at a moisture content of 0.34±0.001 kg kg-1 dry basis (db) were dried in a fixed-layer experimental dryer set at a temperature of 100 °C and an air flow rate of 1.5 m3 min-1 m-2 until they reached a moisture content of 0.16±0.03 kg kg-1 db. For intermittent drying, the process was interrupted at a moisture content of 0.22±0.02 kg kg-1 db and resumed after resting. Tests for electrical conductivity, rupture force, deformation, energy required for rupture, and modulus of toughness and hardness were conducted. Grain integrity is better maintained when the grain has been dried with a longer rest time and stored for short periods; compressive strength exhibits the same behavior as integrity, but hardness, energy for rupture, and the modulus of toughness are not influenced by storage time, and grain deformation was not affected by the rest and storage times.

Downloads

Não há dados estatísticos.

Referências

Abasi, S., & Minaei, S. (2014). Effect of drying temperature on mechanical properties of dried corn. Drying Technology, 32(7), 774-780. https://doi.org/10.1080/07373937.2013.845203

Abdel Maksoud, M. A. F. (2009). Mechanical properties of corn kernels. Misr Journal of Agricultural Engineering, 26(4), 1901-1922. https://doi.org/10.21608/mjae.2009.107576

Allaf, K., Mounir, S., & Negm, M. (2014). Intermittent drying. In A. S. Mujumdar (Ed.), Handbook of Industrial Drying (pp. 491-501). CRC Press.

American Society of Agricultural and Biological Engineers (ASABE). (2007). Standards, Engineering Practices, and Data (ASAE D272.3 MAR1996, R2007). ASABE.

Assar, M., Golmohammadi, M., Rajabi-Hamaneh, M., & Hassankiadeh, M. N. (2016). A combined experimental and theoretical approach to study temperature and moisture dynamic characteristics of intermittent paddy rice drying. Chemical Engineering Communications, 203(9), 1242-1250. https://doi.org/10.1080/00986445.2016.1172483

Coradi, P. C., Souza, A. H. S. D., Camilo, L. J., Lemes, Â. F. C., & Milane, L.V. (2019). Analysis of the physical quality of genetically modified and conventional maize grains in the drying and wetting processes. Revista Ciência Agronômica, 50(3), 370-377. https://doi.org/10.5935/1806-6690.20190044

Couto, S. M., Batista, C. D. S., Peixoto, A. B., & Devilla, I. A. (2002). Comportamento mecânico de frutos de café: módulo de deformidade. Revista Brasileira de Engenharia Agrícola e Ambiental, 6(2), 285-294. https://doi.org/10.1590/S1415-43662002000200018

Esehaghbeygi, A., Daeijavad, M., & Afkarisayyah, A. H. (2009). Breakage susceptibility of rice grains by impact loading. Applied Engineering in Agriculture, 25(6), 943-946. https://doi.org/10.13031/2013.29226

Feng, J., Wu, Z., Qi, D., Jin, Y., & Wu, W. (2019). Accurate measurements and establishment of a model of the mechanical properties of dried corn kernels. International Agrophysics, 33(3), 373-381. https://doi.org/10.31545/intagr/110845

Filippin, A. P., Molina Filho, L., Fadel, V., & Mauro, M. A. (2018). Thermal intermittent drying of apples and its effects on energy consumption. Drying Technology, 36(14), 1662-1677. https://doi.org/10.1080/07373937.2017.1421549

Foroughi-Dahr, M., Golmohammadi, M., Pourjamshidian, R., Rajabi-Hamaneh, M., & Hashemi, S. J. (2015). On the characteristics of thin-layer drying models for intermittent drying of rough rice. Chemical Engineering Communications, 202(8), 1024-1035. https://doi.org/10.1080/00986445.2014.900049

Franco, C. M., Lima, A. G., Farias, V. S., & Silva, W. P. (2020). Modeling and experimentation of continuous and intermittent drying of rough rice grains. Heat and Mass Transfer, 56, 1003-1014. https://doi.org/10.1007/s00231-019-02773-0

Gunasekaran, S., & Paulsen, M. R. (1985). Breakage resistance of corn as a function of drying rates. American Society of Agricultural Engineers, 28(6), 2071-2076. https://doi.org/10.13031/2013.32568

Jan, K. N., Panesar, P.S., & Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. International Agrophysics, 33(1), 41-48. https://doi.org/10.31545/intagr/104374

Kumar, C., Joardder, M. U. H., Farrell, T. W., Millar, G. J., & Karim, M. A. (2016). Mathematical model for intermittent microwave convective drying of food materials. Drying Technology, 34(8), 962-973. https://doi.org/10.1080/07373937.2015.1087408

Leila, A., Jean-Yves, M., Sid-Ahmed, R., Thierry, M., Luc, G., Stephane, C., & Zoulikha, M. R. (2019). Prediction of thermal conductivity and specific heat of native maize starch and comparison with HMT treated starch. Journal of Renewable Materials, 7(6), 535-546. https://doi.org/10.32604/jrm.2019.04361

Lima, A. G. B., Silva, J. V., Pereira, E. M. A., Santos, I. B., & Lima, W. M. P. B. (2016). Drying of bioproducts: Quality and energy aspects. In J. M. P. Q. Delgado & A. G. B. Lima (Eds.), Drying and energy technologies (pp. 1-17). Springer International Publishing. https://doi.org/10.1007/978-3-319-19767-8_1

Mabasso, G. A., Siqueira, V. C., Quequeto, W. D., Jordan, R. A., Martins, E. A. S., & Schoeninger, V. (2021). Energy efficiency and physical integrity of maize grains subjected to continuous and intermittent drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(10), 710-716. https://doi.org/10.1590/1807-1929/agriambi.v25n10p710-716

Mabasso, G. A., Siqueira, V. C., Quequeto, W. D., Resende, O., & Goneli, A. L. D. (2020). Compressive strength of corn kernels subjected to drying under different rest periods. Revista Ciência Agronômica, 51(4), e20196894. https://doi.org/10.5935/1806-6690.20200075

Nishiyama, Y., Cao, W., & Li, B. (2006). Grain intermittent drying characteristics analyzed by a simplified model. Journal of Food Engineering, 76(3), 272-279. https://doi.org/10.1016/j.jfoodeng.2005.04.059

Olaniyan, A. M., & Oje, K. (2002). Some aspects of the mechanical properties of shea nut. Biosystems Engineering, 81(4), 413-420. https://doi.org/10.1006/bioe.2002.0049

Oliveira, K. B., Resende, O., Silva, L. C. M., Célia, J. A., Ferreira Júnior, W. N., & Andrade, E. G. (2022). Mechanical properties of Bertholletia Excelsa H. B. K. kernels stored in different packagings. Food Science and Technology, 42, e56122. https://doi.org/10.1590/fst.56122

Park, H. W., Han, W. Y., & Yoon, W. (2018). Drying characteristics of soybean (Glycine max) using continuous drying and intermittent drying. International Journal of Food Engineering, 14(9-10), 1-11. https://doi.org/10.1515/ijfe-2018-0057

Resende, O., Corrêa, P. C., Oliveira, G. H. H., Goneli, A. L. D., & Jarén, C. (2013). Mechanical properties of rough and dehulled rice during drying. International Journal of Food Studies, 2(2), 158-166. https://doi.org/10.7455/ijfs/2.2.2013.a3

Resende, O., Ferreira, R. B., Ullmann, R., Oliveira, D. E. C. D., Corrêa, P. C., & Costa, L. M. (2018). Moisture content on the mechanical behavior of crambe grains. Ciência Rural, 48(7), 1-6. https://doi.org/10.1590/0103-8478cr20160748

Rodrigues, G. B., Resende, O., Oliveira, D. E., Silva, L. C. D. M., & Ferreira-Junior, W. N. (2019). Mechanical Properties of Grains Sorghum Subjected to Compression at Different Moisture Contents. Journal of Agricultural Science, 11(4), 279-287. https://doi.org/10.5539/jas.v11n4p279

Shirmohammadi, M., Charrault, E., & Blencowe, A. (2018). Micromechanical properties of almond kernels with various moisture content levels. International Journal of Food Properties, 21(1), 1820-1832. https://doi.org/10.1080/10942912.2018.1508157

Suleiman, R. A., & Rosentrater, K. A. (2016). Measured and predicted temperature of maize grain (Zea mays L.) under hermetic storage conditions. Journal of Stored Products and Postharvest Research, 7(1), 1-10. https://doi.org/10.5897/JSPPR2015.0191

Tarighi, J., Mahmoudi, A., & Alavi, N. (2011). Some mechanical and physical properties of corn seed (Var. DCC 370). African Journal of Agricultural Research, 6(16), 3691-3699. https://doi.org/10.5897/AJAR10.521

Vergara, R. D. O., Capilheira, A. F., Gadotti, G. I., & Villela, F. A. (2018). Intermittence periods in corn seed drying process. Journal of Seed Science, 40(2), 193-198. https://doi.org/10.1590/2317-1545v40n2187373

Vieira, R. D., & Krzyzanowski, F. C. (1999). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira & J. B. França Neto (Eds.), Vigor de sementes: conceitos e testes (pp. 1-26). ABRATES.

Zhao, Y., Huang, K., Chen, X. F., Wang, F. H., Chen, P. X., Tu, G., & Yang, D. Y. (2018). Study on mechanical properties for shearing breakage of oat kernel. International Journal of Food Engineering, 14(2), 20170097. https://doi.org/10.1515/ijfe-2017-0097

Downloads

Publicado

2023-07-06

Como Citar

MABASSO, G. A., SIQUEIRA, V. C., RESENDE, O., QUEQUETO, W. D., GONELI, A. L. D., MARTINS, E. A. S., & TAKAGI, A. D. A. (2023). Mechanical properties and integrity of stored corn grains after continuous and intermittent drying. Food Science and Technology, 43. https://doi.org/10.5327/fst.21323

Edição

Seção

Artigos Originais