Properties characterization of binary composite hydrogels of gellan gum and Aloe vera blended at different ratios, pH, and solid contents

Autores

DOI:

https://doi.org/10.5327/fst.7523

Palavras-chave:

Aloe vera, rheological properties, hydrogels, blends, characterization

Resumo

Composite hydrogels based on natural polymers with manufactured properties according to the desired application for the food industry are currently significant. Thus, this study aimed to study the association of low acyl gellan gum (LAGG) and Aloe vera gel (AVG) for composite hydrogel creation by controlling pH (1, 4, 7), solid content (0.25, 0.50, 0.75 w/v), and polymer ratio (66:33, 50:50, and 33:66 LAGG/AVG). Hydrogels were prepared by physical crosslinking, diluting the required amount of LAGG at 90 °C, followed by AVG at 60 °C, and storing at 4 °C. The study involved the analysis of zeta potential (x), water holding capacity (WHC), hardness, storage modulus ( ), loss modulus ( ), and the phase transition temperature ( ) of hydrogels. The corresponding values of x, WHC, hardness, , and  of produced hydrogels were found to be in the ranges of -23.3±1.52 to 6.3±0.25 mV; 4.6±0.22 to 98.9±0.16%; 0.4±0.15 to 14.3±0.81 N; 16,100 to 89,700 Pa; and 22 to 46 °C. Statistical analysis (p<0.05) showed that pH, solid content, and polymer ratio significantly influenced hydrogels' functional properties. However, as a general trend, the pH*solid content interaction was among the most critical factors influencing response variables.

Downloads

Não há dados estatísticos.

Referências

Ahmad, M., Ali, S. W., Hameed, A., Amir, M., Ashrad, J., Afzal, M. I., Umer M., Alsagaby, S. A., Awais, M., Imran, M., Iqbal, S., Ahmed, A., & Riaz, M. (2023). Functional potential of Aloe vera juice against CCl4 induced hepatotoxicity in animal model. Food Science and Technology, 43, e110321. https://doi.org/10.1590/fst.110321

Alavi, F., Emam-Djomeh, Z., Momen, S., Hosseini, E., & Moosavi-Movahedi, A. A. (2020). Fabrication and characterization of acid-induced gels from thermally-aggregated egg white protein formed at alkaline condition. Food Hydrocolloids, 99, 105337. https://doi.org/10.1016/j.foodhyd.2019.105337

Alghooneh, A., Razavi, S. M. A., & Kasapis, S. (2019). Classification of hydrocolloids based on small amplitude oscillatory shear, large amplitude oscillatory shear, and textural properties. Journal of Texture Studies, 50(6), 520-538. https://doi.org/10.1111/jtxs.12459

Alvarado-Morales, G., Minjares-Fuentes, R., Contreras-Esquivel, J. C., Montañez, J., Meza-Velázquez, J. A., & Femenia, A. (2019). Application of thermosonication for Aloe vera (Aloe barbadensis Miller) juice processing: Impact on the functional properties and the main bioactive polysaccharides. Ultrasonics Sonochemistry, 56, 125-133. https://doi.org/10.1016/j.ultsonch.2019.03.030

Association of Official Analytical Chemists (AOAC) (2012). Official methods of analysis of the Association of Official Analytical Chemistry. Association of Official Analytical Chemists.

Duarte, L. G. R., Alencar, W. M. P., Iacuzio, R., Silva, N. C. C., & Picone, C. S. F. (2022). Synthesis, characterization and application of antibacterial lactoferrin nanoparticles. Current Research in Food Science, 5, 642-652. https://doi.org/10.1016/j.crfs.2022.03.009

Gomes, D., Batista-Silva, J. P., Sousa, A., & Passarinha, L. A. (2023). Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydrate Polymers, 311, 120782. https://doi.org/10.1016/j.carbpol.2023.120782

Graham, S., Marina, P. F., & Blencowe, A. (2019). Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydrate Polymers, 207, 143-159. https://doi.org/10.1016/j.carbpol.2018.11.053

Hajikarimi, A., & Sadeghi, M. (2020). Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. Journal of Polymer Research, 27, 57. https://doi.org/10.1007/s10965-020-2020-1

Ilgin, P., Ozay, H., & Ozay, O. (2020). Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. Journal of Polymer Research, 27(9), 251. https://doi.org/10.1007/s10965-020-02231-0

Kazemi-Taskooh, Z., & Varidi, M. (2021). Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids, 111, 106205. https://doi.org/10.1016/j.foodhyd.2020.106205

Liu, C., Cui, Y., Pi, F., Cheng, Y., Guo, Y., & Qian, H. (2019). Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from Aloe vera: A review. Molecules, 24(8), 1554. https://doi.org/10.3390/molecules24081554

Maan, A. A., Ahmed, Z. F. R., Khan, M. K. I., Riaz, A., & Nazir, A. (2021). Aloe vera gel, an excellent base material for edible films and coatings. Trends in Food Science & Technology, 116, 329-341. https://doi.org/10.1016/j.tifs.2021.07.035

Martínez-Burgos, W. J., Lima Serra, J., Marsiglia F, R. M., Montoya, P., Sarmiento-Vásquez, Z., Marin, O., Gallego-Cartagena, E., & Paternina-Arboleda, C. D. (2022). Aloe vera: From ancient knowledge to the patent and innovation landscape- A review. South African Journal of Botany, 147, 993-1006. https://doi.org/10.1016/j.sajb.2022.02.034

Martín-Illana, A., Notario-Pérez, F., Cazorla-Luna, R., Ruiz-Caro, R., Bonferoni, M., Tamayo, A., & Veiga, M. (2022). Bigels as drug delivery systems: From their components to their applications. Drug Discovery Today, 27(4), 1008-1026. https://doi.org/10.1016/j.drudis.2021.12.011

Mousavi, S. M. R., Rafe, A., & Yeganehzad, S. (2019). Textural, mechanical, and microstructural properties of restructured pimiento alginate-guar gels. Journal of Texture Studies, 50(2), 155-164. https://doi.org/10.1111/jtxs.12385

Nele, V., Wojciechowski, J. P., Armstrong, J. P. K., & Stevens, M. M. (2020). Tailoring gelation mechanisms for advanced hydrogel applications. Advanced Functional Materials, 30(42), 2002759. https://doi.org/10.1002/adfm.202002759

Oliveira, A. C., Lima, G. R. F., Klein, R. S., Souza, P. R., Vilsinski, B. H., Garcia, F. P., Nakamura, C. V., & Martins, A. F. (2021). Thermo-and pH-responsive chitosan/gellan gum hydrogels incorporated with the β-cyclodextrin/curcumin inclusion complex for efficient curcumin delivery. Reactive and Functional Polymers, 165, 104955. https://doi.org/10.1016/j.reactfunctpolym.2021.104955

Oliveira, S. M., Fasolin, L. H., Vicente, A. A., Fuciños, P., & Pastrana, L. M. (2020). Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 109, 106120. https://doi.org/10.1016/j.foodhyd.2020.106120

Ordoñez, R., Contreras, C., González-Martínez, C., & Chiralt, A. (2021). Edible coatings controlling mass loss and Penicillium roqueforti growth during cheese ripening. Journal of Food Engineering, 290, 110174. https://doi.org/10.1016/j.jfoodeng.2020.110174

Ozel, B., & Oztop, M. H. (2023). Rheology of food hydrogels, and organogels. In J. Ahmed, S. Basu (Eds.), Advances in food rheology and Its applications. Development in food rheology (pp. 661-688). Woodhead.

Patruni, K., & Rao, P. S. (2023). Viscoelastic behaviour, sensitivity analysis and process optimization of aloe vera/HM pectin mix gels: An investigation using RSM and ANN and its application to food gel formulation. LWT – Food Science and Technology, 176, 114564. https://doi.org/10.1016/j.lwt.2023.114564

Rahmatpour, A., Alijani, N., & Mirkani, A. (2023). Supramolecular self-assembling hydrogel film based on a polymer blend of chitosan/partially hydrolyzed polyacrylamide for removing cationic dye from water. Reactive and Functional Polymers, 185, 105537. https://doi.org/10.1016/j.reactfunctpolym.2023.105537

Saad, F., Mohamed, A. L., Mosaad, M., Othman, H. A., & Hassabo, A. G. (2021). Enhancing the rheological properties of Aloe vera polysaccharide gel for use as an eco-friendly thickening agent in textile printing paste. Carbohydrate Polymer Technologies and Applications, 2, 100132. https://doi.org/10.1016/j.carpta.2021.100132

Sempere-Ferre, F., Giménez-Santamarina, S., Roselló, J., & Santamarina, M. P. (2022). Antifungal in vitro potential of Aloe vera gel as postharvest treatment to maintain blueberry quality during storage. LWT – Food Science and Technology, 163, 113512. https://doi.org/10.1016/j.lwt.2022.113512

Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M., & Ávila, P. (2022). Zeta potential as a tool for functional materials development. Catalysis Today. https://doi.org/10.1016/j.cattod.2022.08.004

Zhang, J., Wang, G., Liang, Q., Cai, W., & Zhang, Q. (2019). Rheological and microstructural properties of gelatin B/tara gum hydrogels: Effect of protein/polysaccharide ratio, pH and salt addition. LWT – Food Science and Technology, 103, 108-115. https://doi.org/10.1016/j.lwt.2018.12.080

Zhang, N., Li, X., Ye, J., Yang, Y., Huang, Y., Zhang, X., & Xiao, M. (2020a). Effect of gellan gum and xanthan gum synergistic interactions and plasticizers on physical properties of plant-based enteric polymer films. Polymers, 12(1), 121. https://doi.org/10.3390/polym12010121

Zhang, W. H., Wu, J., Weng, L., Zhang, H., Zhang, J., & Wu, A. (2020b). An improved phenol-sulfuric acid method for the determination of carbohydrates in the presence of persulfate. Carbohydrate Polymers, 227, 115332. https://doi.org/10.1016/j.carbpol.2019.115332

Downloads

Publicado

2023-07-06

Como Citar

HERNÁNDEZ-BRIONES, V. G., GONZÁLEZ-GARCÍA, R., PÉREZ-MARTÍNEZ, J. D., GRAJALES-LAGUNES, A., ABUD-ARCHILA, M., & RUIZ-CABRERA, A. (2023). Properties characterization of binary composite hydrogels of gellan gum and Aloe vera blended at different ratios, pH, and solid contents. Food Science and Technology, 43. https://doi.org/10.5327/fst.7523

Edição

Seção

Artigos Originais