Improving craft beer style classification through physicochemical determination and the application of deep learning techniques

Autores

  • Laura Cecilia GÓMEZ PAMIES Universidad Tecnológica Nacional, Facultad Regional Resistencia, Centro de Investigación en Química e Ingeniería Teórica y Experimental, Resistencia, Chaco, Argentina. https://orcid.org/0009-0005-9844-2038
  • María Agostina BIANCHI Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Nordeste, Instituto de Química Básica y Aplicada del Nordeste Argentino, Corrientes, Argentina. https://orcid.org/0009-0002-1598-8333
  • Andrea Paola FARCO Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Nordeste, Instituto de Química Básica y Aplicada del Nordeste Argentino, Corrientes, Argentina. https://orcid.org/0009-0006-5851-1112
  • Raimundo VÁZQUEZ Universidad Tecnológica Nacional, Facultad Regional Resistencia, Grupo Universitario de Automatización, Resistencia, Chaco, Argentina. https://orcid.org/0009-0003-3562-8498
  • Elisa Inés BENÍTEZ Universidad Tecnológica Nacional, Facultad Regional Resistencia, Centro de Investigación en Química e Ingeniería Teórica y Experimental, Resistencia, Chaco, Argentina. https://orcid.org/0000-0002-6320-8357

DOI:

https://doi.org/10.5327/fst.00071

Palavras-chave:

physicochemical attributes, beer, predictive analysis

Resumo

The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers' new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers.

Downloads

Não há dados estatísticos.

Referências

Bamforth, C. W. (2003). Refining matters-downstream processing. In: C. W. Bamforth (ed.). Beer: Tap into the Art and Science of Brewing. Oxford University Press.

Bamforth, C. W. (2009). Beer: A Quality Perspective. Academic Press.

Beer Judge Certification Program (2021). Style Guidelines. Retrieved from https://www.bjcp.org/bjcp-style-guidelines

Bowles, M. (2020). Machine Learning in Python® Essential Techniques for Predictive Analysis. John Wiley & Sons.

Briggs, D., Boulton, C., Brookes, P., & Stevens, R. (2004). Beer maturation and treatments. In D. Briggs, C. Boulton, P. Brookes & R. Stevens (eds.). Brewing: science and practice (p. 543-588). Woodhead.

Chaco Día por Día (2019). Exitosa cuarta edición del Festival de la Cerveza Artesanal en Resistencia. Chaco Día por Día. Retrieved from https://www.chacodiapordia.com/2019/09/29/exitosa-cuarta-edicion-del-festival-de-la-cerveza-artesanal-en-resistencia/

Chan, M. Z. A., Chua, J. Y., Toh, M., & Liu, S.Q. (2019). Survival of probiotic strain Lactobacillus paracasei L26 during cofermentation with S. cerevisiae for the development of a novel beer beverage. Food Microbiology, 82, 541-550. https://doi.org/10.1016/j.fm.2019.04.001

Código Alimentario Argentino (2007). Retrieved from http://www.anmat.gov.ar/webanmat/codigoa/Capitulo_XIII_BebFermentadas_2007-11.pdf

Dietz, C., Cook, D., Wilson, C., Oliveira, P., & Ford, R. (2021). Exploring the multisensory perception of terpene alcohol and sesquiterpene rich hop extracts in lager style beer. Food Research International, 148, 110598. https://doi.org/10.1016/j.foodres.2021.110598

Gasiński, A., Kawa-Rygielska, J., Paszkot, J., Pietrzak, W., Śniegowska, J., & Szumny, A. (2022). Second life of hops: Analysis of beer hopped with hop pellets previously used to dry-hop a beer. LWT, 159, 113186. https://doi.org/10.1016/j.lwt.2022.113186

Gómez Pamies, L. C, Lataza Rovaletti, M. M., Martinez Amezaga, N. M. J., & Benítez E. I. (2021). The impact of pirodextrin addition to improve physicochemical parameters of sorghum beer. LWT- Food Science and Technology, 149, 112040. https://doi.org/10.1016/j.lwt.2021.112040

Gulli, A., & Pal, S. (2017). Implement neural networks with Keras on Theano and Tensor Flow. In A. Gulli & S. Pal (eds.). Deep Learning with Keras (p. 50-53). Birmingham.

Harrington, R. J., von Freyberg, B., Ottenbacher, M. C., & Schmidt, L. (2017). The different effects of dis-satisfier, satisfier and delighter attributes: Implications for Oktoberfest and beer festivals. Tourism Management Perspectives, 24, 166-176. https://doi.org/10.1016/j.tmp.2017.09.003

Holbrook, C. (2019). Brewhouse operations. In C. Smart (ed.). The Craft Brewing Handbook. Woodhead.

Howe, S. (2019). Raw materials. In C. Smart (ed.). The Craft Brewing Handbook. Woodhead.

Jaeger, S. R., Worch, T., Phelps, T., Jin, D., & Cardello, A. V. (2020). Preference segments among declared craft beer drinkers: Perceptual, attitudinal and behavioral responses underlying craft-style vs. traditional style flavor preferences. Food Quality and Preference, 82, 103884. https://doi.org/10.1016/j.foodqual.2020.103884

Lafontaine, S., Varnum, S., Roland, A., Delpech, S., Dagan, L., Vollmer, D., Kishimoto, T., & Shellhammer, T. (2018). Impact of harvest maturity on the aroma characteristics and chemistry of Cascade hops used for dry-hopping. Food Chemistry, 278, 228-239. https://doi.org/10.1016/j.foodchem.2018.10.148

Mitteleuropäische Brautechnische Analysenkommission (MEBAK) (2013). Wort, Beer, Beer-Based Beverages. Hans Carl Verlag.

Mongi, C. (2019). Oktoberfest-una-fiesta-tradicional-que-le-escapa-crisis-economica Una nueva edición de la fiesta de la cerveza en Villa General Belgrano. La Voz. Retrieved from https://www.lavoz.com.ar/ciudadanos/oktoberfest-una-fiesta-tradicional-que-le-escapa-crisis-economica

Moura-Nunes, N., Cazaroti Brito, T. Dias da Fonseca, N., Fernandes de Aguiar, P., Monteiro, M., Perrone, D., & Guedes Torres, A. (2016). Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chemistry, 199, 105-113. https://doi.org/10.1016/j.foodchem.2015.11.133

Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., & Cook, D. (2017). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chemistry, 230, 215-224. https://doi.org/10.1016/j.foodchem.2017.03.031

Opperman, A. (2019). What is Deep Learning and How does it work? Retrieved from https://builtin.com/machine-learning/deep-learning

Zyner, A., Worrall, S., & Nebot, E. (2018). A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections. IEEE Robotics and Automation Letters, 3(3), 1759-1764. https://doi.org/10.1109/LRA.2018.2805314

Downloads

Publicado

2024-04-08

Como Citar

GÓMEZ PAMIES, L. C., BIANCHI, M. A., FARCO, A. P., VÁZQUEZ, R., & BENÍTEZ, E. I. (2024). Improving craft beer style classification through physicochemical determination and the application of deep learning techniques. Food Science and Technology, 44. https://doi.org/10.5327/fst.00071

Edição

Seção

Artigos Originais