Unlocking the microbial potential of Frieseomelitta varia pollen for innovative probiotic mead development
DOI:
https://doi.org/10.5327/fst.00495Keywords:
mead, probiotic beverage, pollen, fermented drink, probiotic mead, honeyAbstract
This study explores an innovative approach to mead production by incorporating Frieseomelitta varia bee pollen as a microbial starter to promote probiotic fermentation. Mead was produced using 5 kg of honey (82° Brix, pH 4.5), 26 L of filtered water, 20 g of pollen for lactic fermentation, and 10 g of Saccharomyces cerevisiae (M05 Mead Yeast) for alcoholic fermentation. A total of six sanitized fermentative reactors were used with varied pollen concentrations (1–20 g/2 L). The process included wort preparation (boiling, cooling, and mixing), 24 days of fermentation, 2 months of maturation, and final bottling. Samples were analyzed using standardized methods for alcohol content, pH, original and final gravity, color (ultraviolet–visible [UV–vis], 430 nm), and volatile profiles (gas chromatography-mass spectrometry [GC-MS]). Sensory evaluation assessed aroma and flavor on a 1–5 scale. The results showed that F. varia pollen supports microbial activity, yielding a mead with probiotic counts above 10⁶ colony-forming unit (CFU) mL⁻¹. The addition of pollen enhanced physicochemical characteristics and sensory properties, producing a probiotic mead with potential health benefits. This approach not only improves product quality but also aligns with growing market interest in functional and fermented beverages.
Downloads
References
Abouda, Z., Zerdani, I., Kalalou, I., Faid, M., & Ahami, M. T. (2011). The antibacterial activity of Moroccan bee bread and bee-pollen (fresh and dried) against pathogenic bacteria. Research Journal of Microbiology, 6(4), 376–384. https://doi.org/10.3923/jm.2011.376.384
Amorim, T. S., Lopes, S. de B., Bispo, J. A. C., Bonafe, C. F. S., de Carvalho, G. B. M., & Martínez, E. A. (2018). Influence of acerola pulp concentration on mead production by Saccharomyces cerevisiae AWRI 796. LWT, 97, 561–569. https://doi.org/10.1016/j.lwt.2018.07.009
Anderson, K. E., Carroll, M. J., Sheehan, T., Mott, B. M., Maes, P., & Corby‐Harris, V. (2014). Hive‐stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Molecular Ecology, 23(23), 5904–5917. https://doi.org/10.1111/mec.12966
Associação Brasileira de Estudos das Abelhas (A.B.E.L.H.A.) (2024). Atlas da apicultura no Brasil. A.B.E.L.H.A. Retrieved from https://abelha.org.br/atlas-da-apicultura-no-brasil
Associação Brasileira de Normas Técnicas (ABNT) (2017). NBR ISO 5492: Sensory analysis — Vocabulary. ABNT.
Brandão, H. C. A. D. N. T. de M., Brandão, W. A. P. L. N. T. de M., Mendonça, S. N. T. G. de, & Felsner, M. L. (2021). Bebida fermentada probiótica de extrato de arroz: Uma alternativa alimentar aos intolerantes à lactose e aos alérgicos às proteínas do leite bovino e da soja. Brazilian Journal of Food Technology, 24, Article e2020119. https://doi.org/10.1590/1981-6723.11920
Brasil (2009). Decreto nº 6.817 de 2009. Brazil. Retrieved from https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/decreto/d6871.htm
Brasil (2012a). Instrução Normativa nº 34, de 29 de novembro de 2012. Ministério da Agricultura. Retrieved from https://www.legisweb.com.br/legislacao/?id=247520
Brasil, V. C. B., Guimarães, B. P., Evaristo, R. B. W., Carmo, T. S., & Ghesti, G. F. (2020). Buckwheat (Fagopyrum esculentum Moench) characterization as adjunct in beer brewing. Food Science and Technology, 41(Suppl. 1), 265–272. https://doi.org/10.1590/fst.15920
Castro, M. G. (2021). Pontos relevantes da produção de hidromel. Universidade Federal de Uberlândia.
Cavanholi, M. G., Wanderley, B. R. da S. M., Santetti, G. S., Amboni, R. D. de M. C., & Fritzen-Freire, C. B. (2021). Influência da adição de erva-mate (Ilex paraguariensis A. St. Hil.) em pó nas características físico-químicas e no potencial bioativo de hidroméis. Research, Society and Development, 10(9), Article e25010917821. https://doi.org/10.33448/rsd-v10i9.17821
Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology, 8, Article 1490. https://doi.org/10.3389/fmicb.2017.01490
Gebrim, S. (2011). Honey production grows 30% in the last year. Revista Cultivar. Retrieved from https://revistacultivar.com.br/noticias/producao-de-mel-cresce-30-no-ultimo-ano
Ghesti, G., Carvalho, I., Carmo, T., & Suarez, P. A. Z. (2023). A newer source of microorganism to produce Catharina Sour beers. Food Science and Technology, 43, Article e102022. https://doi.org/10.1590/fst.102022
Gilliam, M. (1979). Microbiology of pollen and bee bread: The yeasts. Apidologie, 10(1), 43–53. https://doi.org/10.1051/apido:19790106
Hübbe, T., Reitenbach, A. F., Burin, V. M., Ghesti, G. F., & Jürgen, F. (2024). Effect of mixed cultures on microbiological development in Berliner Weisse beer. Fermentation, 10(7), Article 363. https://doi.org/10.3390/fermentation10070363
Kawa-Rygielska, J., Adamenko, K., Kucharska, A. Z., & Szatkowska, K. (2019). Fruit and herbal mead – Chemical composition and antioxidant properties. Food Chemistry, 283, 19–27. https://doi.org/10.1016/j.foodchem.2019.01.040
Martin, J. G. P., & Lindner, J. D. (2021). Microbiologia de alimentos fermentados. Bluncher.
McConnell, D. S., & Schramm, K. D. (1995). Mead success: Ingredients, processes and techniques. Zymurgy, Spring(4), 33–39.
Mendes-Ferreira, A., Cosme, F., Barbosa, C., Falco, V., Inês, A., & Mendes-Faia, A. (2010). Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. International Journal of Food Microbiology, 144(1), 193–198. https://doi.org/10.1016/j.ijfoodmicro.2010.09.016
Miele, A. (2021). Wine composition of Merlot and Cabernet Sauvignon vine clones under the environmental conditions of Serra Gaúcha, Brazil. Food Science and Technology, 41(Suppl. 1), 116–122. https://doi.org/10.1590/fst.10520
Mohammad, S. M., Mahmud-Ab-Rashid, N.-K., & Zawawi, N. (2020). Probiotic properties of bacteria isolated from bee bread of stingless bee Heterotrigona itama. Journal of Apicultural Research, 60(1), 172–187. https://doi.org/10.1080/00218839.2020.1801152
Roldán, A., van Muiswinkel, G. C. J., Lasanta, C., Palacios, V., & Caro, I. (2011). Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chemistry, 126(2), 574–582. https://doi.org/10.1016/j.foodchem.2010.11.045
Romano, R., Aiello, A., De Luca, L., Sica, R., Caprio, E., Pizzolongo, F., & Blaiotta, G. (2021). Characterization of a new type of mead fermented with Cannabis sativa L. (hemp). Journal of Food Science, 86(3), 874–880. https://doi.org/10.1111/1750-3841.15614
Santos, A. C. C., Borges, L. D. F., Rocha, N. D. C., de Carvalho Azevedo, V. A., Bonetti, A. M., dos Santos, A. R., da Rocha Fernandes, G., Dantas, R. C. C., & Ueira-Vieira, C. (2023). Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Scientific Reports, 13(1), Article 5147. https://doi.org/10.1038/s41598-023-32298-w
Schwarz, L. V., Marcon, A. R., Delamare, A. P. L., Agostini, F., Moura, S., & Echeverrigaray, S. (2020). Selection of low nitrogen demand yeast strains and their impact on the physicochemical and volatile composition of mead. Journal of Food Science and Technology, 57(8), 2840–2851. https://doi.org/10.1007/s13197-020-04316-6
Silva, I. P., Dias, L. G., da Silva, M. O., Machado, C. S., Paula, V. M. B., Evangelista-Barreto, N. S., de Carvalho, C. A. L., & Estevinho, L. M. (2020). Detection of biogenic amines in mead of social bee. LWT, 121, Article 108969. https://doi.org/10.1016/j.lwt.2019.108969
Vidrih, R., & Hribar, J. (2007). Studies on the sensory properties of mead and the formation of aroma compounds related to the type of honey. Acta Alimentaria, 36(2), 151–162. https://doi.org/10.1556/AAlim.36.2007.2.2