Kinetics of volatile aromatic compound production during the aging of cachaça in different types of wood

Autores

DOI:

https://doi.org/10.5327/fst.00455

Palavras-chave:

spirit drink, fermentation, maturation

Resumo

This study evaluated cachaças aged up to 48 months in four types of wood (oak, amburana, balsam, and chestnut), with analyses performed every four months, totaling 48 samples per type of wood. Compounds such as ethyl acetate, ethyl lactate, and aldehydes were identified and quantified by gas chromatography and were kinetically modeled by the Peleg model. The results demonstrated that the model presented an excellent fit to the experimental data (R² > 0.94), indicating that the production of volatile compounds follows second-order kinetics. The initial production rate was higher in the first 24 months, with stabilization observed after this period. Tropical woods, like amburana, balsam, oak, and chestnut, presented a higher initial production rate than oak, demonstrating a slower but constant evolution throughout aging. Light and volatile compounds, such as acetaldehyde and ethyl acetate, predominated initially, contributing to fresh and fruity aromatic profiles. Compounds with a higher molecular weight, as ethyl palmitate and phenols, became more evident in the final stages and were associated with denser and more complex sensory notes. This study highlights the significant impact of wood type and aging time on the chemical and sensory profile of cachaça, providing valuable information for optimizing the aging process and developing beverages with unique aromatic characteristics.

Downloads

Não há dados estatísticos.

Referências

Acosta-Salazar, E., Fonseca-Aguiñaga, R., Warren-Vega, W. M., Zárate-Guzmán, A. I., Zárate-Navarro, M. A., Romero-Cano, L. A., & Campos-Rodríguez, A. (2021). Effect of age of agave tequilana weber blue variety on quality and authenticity parameters for the tequila 100% agave silver class: Evaluation at the industrial scale level. Foods, 10(12), Article 3103. https://doi.org/10.3390/foods10123103

Alvarenga, G. F., Resende Machado, A. M., Barbosa, R. B., Ferreira, V. R. F., Santiago, W. D., Teixeira, M. L., Nelson, D. L., & Cardoso, M. das G. (2023). Correlation of the presence of acrolein with higher alcohols, glycerol, and acidity in cachaças. Journal of Food Science, 88(4), 1753–1768. https://doi.org/10.1111/1750-3841.16523

Bortoletto, A. M. (2023). Rum and cachaça. In A. Hill, & F. Jack (Eds.), Distilled Spirits (pp. 61–74). Academic Press. https://doi.org/10.1016/B978-0-12-822443-4.00013-X

Brazilian Ministry of Agriculture, Livestock and Food Supply. (2022). Anuário da cachaça 2021. https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/publicacoes/anuario-da-cachaca-2021-1.pdf

Buglass, A. J. (2010). Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects. Wiley. https://doi.org/10.1002/9780470976524

Colivet, J., Oliveira, A. L., & Carvalho, R. A. (2016). Influence of the bed height on the kinetics of watermelon seed oil extraction with pressurized ethanol. Separation and Purification Technology, 169, 187–195. https://doi.org/10.1016/j.seppur.2016.06.020

Delgado-González, M. J., García-Moreno, M. V., Sánchez-Guillén, M. M., García-Barroso, C., & Guillén-Sánchez, D. A. (2021). Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control, 119, Article 107468. https://doi.org/10.1016/j.foodcont.2020.107468

Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11(2), 114–126. https://doi.org/10.1111/j.1755-0238.2005.tb00283.x

Geroyiannaki, M., Komaitis, M. E., Stavrakas, D. E., Polysiou, M., Athanasopoulos, P. E., & Spanos, M. (2007). Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control, 18(8), 988–995. https://doi.org/10.1016/j.foodcont.2006.06.005

Guerrero-Chanivet, M., Valcárcel-Muñoz, M. J., García-Moreno, M. V., & Guillén-Sánchez, D. A. (2020). Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Ageing Spirits and Wines. Foods, 9(11), Article 1613. https://doi.org/10.3390/foods9111613

Jackson, R. S. (2008). Wine Science: Principles and Applications (3rd ed.). Academic Press.

Lima, C. M. G., Benoso, P., Pierezan, M. D., Santana, R. F., Hassemer, G. S., Rocha, R. A., Nora, F. M. D., Verruck, S., Caetano, D., & Simal-Gandara, J. (2022). A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. Journal of Food Composition and Analysis, 106, Article 104338. https://doi.org/10.1016/j.jfca.2021.104338

Liu, S.-Q. (2002). Malolactic fermentation in wine – beyond deacidification. Journal of Applied Microbiology, 92(4), 589–601. https://doi.org/10.1046/j.1365-2672.2002.01589.x

Lončarić, A., Patljak, M., Blažević, A., Jozinović, A., Babić, J., Šubarić, D., Pichler, A., Flanjak, I., Kujundžić, T., & Miličević, B. (2022). Changes in Volatile Compounds during Grape Brandy Production from ‘Cabernet Sauvignon’ and ‘Syrah’ Grape Varieties. Processes, 10(5), Article 988. https://doi.org/10.3390/pr10050988

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030

Medeiros, A. B. P., Matos, M. E., Monteiro, A. P., Carvalho, J. C., & Soccol, C. R. (2017). Cachaça and Rum. In A. Pandey, M. A. Sanromán, G. Du, C. R. Soccol, & C.-G. Dussap (Eds.), Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry (pp. 451–468). Elsevier. https://doi.org/10.1016/B978-0-444-63666-9.00016-9

Nascimento, E. S. P., Cardoso, D. R., & Franco, D. W. (2008). Quantitative Ester Analysis in Cachaça and Distilled Spirits by Gas Chromatography−Mass Spectrometry (GC−MS). Journal of Agricultural and Food Chemistry, 56(14), 5488–5493. https://doi.org/10.1021/jf800551d

Nóbrega, I. C. C. (2003). Análise dos compostos voláteis da aguardente de cana por concentração dinâmica do “headspace” e cromatografia gasosa-espectrometria de massas. Ciência e Tecnologia de Alimentos, 23(2), 210–216. https://doi.org/10.1590/s0101-20612003000200019

Oliveira, L. O., & Ferrarezi Junior, E. (2022). Produção De Cachaça Artesanal. Revista Interface Tecnológica, 19(2), 810–818. https://doi.org/10.31510/infa.v19i2.1542

Pereira, C. S. M., & Rodrigues, A. E. (2014). Ethyl Lactate Main Properties, Production Processes, and Applications. In F. Chemat, & M. A. Vian (Eds.), Alternative Solvents for Natural Products Extraction (pp. 107–125). Springer. https://doi.org/10.1007/978-3-662-43628-8_6

Portugal, C. B., Silva, A. P., Bortoletto, A. M., & Alcarde, A. R. (2017). How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Research International, 91, 18–25. https://doi.org/10.1016/j.foodres.2016.11.022

Ribéreau‐Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Chemical Nature, Origins and Consequences of the Main Organoleptic Defects. In P. Ribéreau‐Gayon, Y. Glories, A. Maujean, & D. Dubourdieu (Eds.), Handbook of Enology: The Chemistry of Wine Stabilization and Treatments (pp. 231–284). Wiley. https://doi.org/10.1002/0470010398

Rodrigues, B. U., Costa, R. M., Salvini, R. L., Soares, A. S., Silva, F. A., Caliari, M., Cardoso, K. C. R., & Ribeiro, T. I. M. (2014). Cachaça classification using chemical features and computer vision. Procedia Computer Science, 29, 2024–2033. https://doi.org/10.1016/j.procs.2014.05.186

Serafim, F. A. T., & Franco, D. W. (2015). Chemical traceability of industrial and natural yeasts used in the production of Brazilian sugarcane spirits. Journal of Food Composition and Analysis, 38, 98–105. https://doi.org/10.1016/j.jfca.2014.11.001

Serafim, F. A. T., & Lanças, F. M. (2019). Sugarcane Spirits (Cachaça) Quality Assurance and Traceability: An Analytical Perspective. In A. M. Grumezescu, & A. M. Holban (Eds.), Production and Management of Beverages (pp. 335–359). Woodhead Publishing. https://doi.org/10.1016/b978-0-12-815260-7.00011-0

Shin, K.-S., & Lee, J.-H. (2019). Acetaldehyde contents and quality characteristics of commercial alcoholic beverages. Food Science and Biotechnology, 28(4), 1027–1036. https://doi.org/10.1007/s10068-019-00564-1

Shinohara, T., & Shimizu, J.-I. (1981). Formation of Ethyl Ester of Main Organic Acids during Aging of Wine and Indications of Aging. Nippon Nōgeikagaku Kaishi, 55(8), 679–687. https://doi.org/10.1271/nogeikagaku1924.55.679

Slaghenaufi, D., & Ugliano, M. (2018). Norisoprenoids, sesquiterpenes and terpenoids content of Valpolicella wines during aging: Investigating aroma potential in relationship to evolution of tobacco and balsamic aroma in aged wine. Frontiers in Chemistry, 6, Article 66. https://doi.org/10.3389/fchem.2018.00066

Srdjenović-Čonić, B., Kladar, N., Božin, B., & Torović, L. (2022). Harmful volatile substances in recorded and unrecorded fruit spirits. Arabian Journal of Chemistry, 15(8), Article 103981. https://doi.org/10.1016/j.arabjc.2022.103981

Stanojević, J., Karabegović, I., Danilović, B., Zvezdanović, J., Stanojević, L., & Cvetković, D. (2024). Comparison of Gas Chromatography–Mass Spectrometry and Headspace-Solid phase Microextraction Methods for the Qualitative and Semi-Quantitative Determination of Aroma Compounds in Fruit-Based Spirits (Rakija) from Serbia. Journal of Analytical Chemistry, 79, 81–94. https://doi.org/10.1134/S106193482401009X

Valcárcel-Muñoz, M. J., Butrón-Benítez, D., Guerrero-Chanivet, M., García-Moreno, M. V., Rodríguez-Dodero, M. C., & Guillén-Sánchez, D. A. (2022). Influence of alcoholic strength on the characteristics of Brandy de Jerez aged in Sherry Casks®. Journal of Food Composition and Analysis, 111, Article 104618. https://doi.org/10.1016/j.jfca.2022.104618

Yu, X., Huang, T., Huang, Z., Wu, Z., Che, J., Qin, F., & Zhang, W. (2023). Effects of six commercially available koji (Chinese Xiaoqu) on the production of ethyl acetate, ethyl lactate, and higher alcohols in Chinese Baijiu (distilled spirit) brewing. Heliyon, 9(7), Article e17739. https://doi.org/10.1016/j.heliyon.2023.e17739

Zheng, J., Liang, R., Huang, J., Zhou, R.-P., Chen, Z.-J., Wu, C.-D., Zhou, R.-Q., & Liao, X.-P. (2014). Volatile compounds of raw spirits from different distilling stages of luzhou-flavor spirit. Food Science and Technology Research, 20(2), 283–293. https://doi.org/10.3136/fstr.20.283

Downloads

Publicado

2025-05-20

Como Citar

BRICENO, J. C. C., RABELO, P. N., BELO, L., MENDES, D., CALIARI, M., SILVA, F., MORGADO, C., & OLIVEIRA, T. F. de. (2025). Kinetics of volatile aromatic compound production during the aging of cachaça in different types of wood. Food Science and Technology, 45. https://doi.org/10.5327/fst.00455

Edição

Seção

Artigos Originais