Ability of Escherichia coli to form biofilm in tomato fruits (Solanum lycopersicum L.)
DOI:
https://doi.org/10.5327/fst.00450Palavras-chave:
greenhouse, enteropathogen, vegetableResumo
Foodborne diseases are frequently caused by bacterial pathogens, many of which are able to protect themselves from unfavorable environmental conditions by forming a biofilm, allowing them to successfully colonize inert surfaces and living substrates, such as edible fruits. The objective of this study was to evaluate the formation of biofilms by Escherichia coli from different origins (12 strains) in order to select the best biofilm formers and investigate them on tomato fruits under greenhouse conditions. For this purpose, the microtiter technique was used, which permits measuring the adhesion of bacterial communities to surfaces. Two media were assessed (minimum essential added with glucose and Luria Bertanni broth), incubated at 37°C, and readings were taken at 24, 48 and 72 hours. The results showed that the strains differed in their biofilm production levels, with no difference between the media evaluated, reaching their maximum production level at 72 hours. The bacteria with the best production were enterohemorrhagic O157:H7, which were inoculated on tomatoes for evaluation prior to greenhouse conditions, where biofilm development was determined at two production stages (commercial and physiological maturity). The results demonstrated that Escherichia coli has the ability to form biofilms on tomato fruits.
Downloads
Referências
Adator, E. H., Cheng, M., Holley, R., McAllister, T., & Narvaez-Bravo, C. (2018). Ability of Shiga toxigenic Escherichia coli to survive within dry-surface biofilms and transfer to fresh lettuce. International Journal of Food Microbiology, 269, 52–59. https://doi.org/10.1016/j.ijfoodmicro.2018.01.014
Avila-Novoa, M.-G., Iñíguez-Moreno, M., Solís-Velázquez, O.-A., González-Gomes, J.-P., Guerrero-Medina, P.-J., & Gutiérrez-Lomelí, M. (2018). Biofilm formation by Staphylococcus aureus isolated from food contact surfaces in the dairy industry of Jalisco, Mexico. Journal of Food Quality, 2018, Article 746139, https://doi.org/10.1155/2018/1746139
Branda, S. S, Vik, A., Friedman, L., & Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13(1), 20–26. https://doi.org/10.1016/j.tim.2004.11.006
Brandl, M. T. (2008) Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Applied and Environmental Microbiology, 74(17), Article 52855289. http://doi.org/10.1128/aem.01073-08
Cáceres, M. E., Etcheverría, A. I., & Padola, N. L. (2019). Efectos del medio de cultivo y de la metodología aplicada sobre la formación de biopelículas de 2 cepas de Escherichia coli diarreagénicas. Revista Argentina de Microbiología, 51(3), 208–213. https://doi.org/10.1016/j.ram.2018.04.007
Carey, C. M., Kostrzynska, M., & Thompson, S. (2009). Escherichia coli O157:H7 stress and virulence gene expression on romaine lettuce using comparative real-time PCR. Journal of Microbiological Methods, 77(2), 235–242. https://doi.org/10.1016/j.mimet.2009.02.010
Castañeda-Ruelas, G. M., Salazar-Jiménez, E. P., Hernández-Chiñas, U., Eslava-Campos, C., & Chaidez-Quiroz, C. (2018). Adhesion capacity and invasion index of L. monocytogenes strains isolated from food and clinical cases in Mexico. Revista Bio Ciencias, 6, Article e456. https://doi.org/10.15741/revbio.06.nesp.e456
Centers for Disease Control and Prevention (2024). E. coli (Escherichia coli). Retrieved 2025, May 27 from https://www.cdc.gov/ecoli/about/index.html
Deering, A. J., Mauer, L. J., & Pruitt, R. E. (2012). Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Research International, 45(2), 567–575. https://doi.org/10.1016/j.foodres.2011.06.058
Donlan, R. M. (2002) Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/eid0809.020063
Erickson, M. C. (2012). Internalization of fresh produce by foodborne pathogens. Annual Review of Food Science and Technology, 3, 283–310. https://doi.org/10.1146/annurev-food-022811-101211
Eslava, C., Mateo, J., & Cravioto, A. (1994). Cepas de Eschericha coli relacionadas con la diarrea. In S. Giono, A. Escobar, J. L. Valdespino (Eds.), Diagnóstico de laboratorio de infecciones gastrointestinales (p. 251). Secretaría de Salud de Mexico.
Eslava, C., Navarro-García, F., Czeczulin, J. R., Henderson, I. R., Cravioto, A., & Nataro, J. P. (1998). Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infection and Immunity, 66(7), 3155–3163. https://doi.org/10.1128/IAI.66.7.3155-3163.1998
Figueroa-Arredondo, P. (2011). Brote epidémico en Europa, por E. coli altamente virulenta causante del síndrome urémico hemolítico [Editorial]. Evidencia e Investigación Clínica, 4(3), 76–79. https://www.imbiomed.com.mx/articulo.php?id=78763
Gomes, C., Silva, P., Moreira, R. G., Castell-Perez, E., Ellis, E. A., & Pendleton, M. (2009). Understanding E. coli internalization in lettuce leaves for optimization of irradiation treatment. International Journal of Food Microbiology, 135(3), 238–247. https://doi.org/10.1016/j.ijfoodmicro.2009.08.026
Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology, 6(2), 111–120. https://doi.org/10.1038/nrmicro1836
Jamalludeen, N., Johnson, R. P., Friendship, R., Kropinski, A. M., Lingohr, E. J., & Gyles, C. L. (2007). Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Veterinary Microbiology, 124(1–2), 47–57. https://doi.org/10.1016/j.vetmic.2007.03.028
Koneman, E. W., Winn, W. C., Allen, S. D., Janda, W. M., Procop, G. W., Schreckenberger, P. C, & Woods, G. L. (2008). Diagnostico Microbiologico: Texto y Atlas en color (6th ed.). Editorial Medica Panamericana.
Kroupitski, Y., Golberg, D., Belausov, E., Pinto, R., Swartzberg, D., Granot, D., & Sela, S. (2009). Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Applied and Environmental Microbiology, 75(19), 6076–6086. https://doi.org/10.1128/AEM.01084-09
Lajhar, S. A., Brownlie, J., & Barlow, R. (2018). Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia. BMC Microbiology, 18, Article 41. https://doi.org/10.1186/s12866-018-1182-z
Lindsay, D., & von Holy, A. (2006). Bacterial biofilms within the clinical setting: what healthcare professionals should know. The Journal of Hospital Infection, 64(4), 313–325. https://doi.org/10.1016/j.jhin.2006.06.028
López-Islas, J. J., Martínez-Gómez, D., Ortiz-López, W. E., Reyes-Cruz, T., López-Pérez, A. M., Eslava, C., & Méndez-Olvera, E. T. (2024). Escherichia coli strains isolated from American Bison (Bison bison) showed uncommon virulent gene patterns and antimicrobial multi-resistance. Microorganisms, 12(7), Article 1367. https://doi.org/10.3390/microorganisms12071367
Ma, Z., Bumunang, E. W., Stanford, K., Bie, X., Niu, Y. D., & McAllister, T. A. (2019). biofilm formation by shiga toxin-producing escherichia coli on stainless steel coupons as affected by temperature and incubation time. Microorganisms, 7(4), Article 95. https://doi.org/10.3390/microorganisms7040095
Mauad, S. M., Correia, A. R., Carneiro, L. C., & Naves, P. L. F. (2023). Biofilm formation and virulence factors distribution among clinical isolates of Pseudomonas aeruginosa. Revista de Ciências Médicas e Biológicas, 22(4), 685–691. https://doi.org/10.9771/cmbio.v22i4.53209
Mobley, H. L., Green, D. M., Trifillis, A. L., Johnson, D. E., Chippendale, G. R., Lockatell, C. V., Jones, B. D., & Warren, J. W. (1990). Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infection and Immunity, 58(5), 1281–1289. https://doi.org/10.1128/iai.58.5.1281-1289.1990
Mukhopadhyay, S., Ukuku, D. O., Juneja, V., & Fan, X. (2014). Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control, 44, 110–117. https://doi.org/10.1016/j.foodcont.2014.03.027
Ogasawara, H., Yamamoto, K., & Ishihama, A. (2010). Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. FEMS Microbiology Letters, 312(2), 160–168. https://doi.org/10.1111/j.1574-6968.2010.02112.x
O'Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
Park, S., Kim, S. H., Seo, J. J., Kee, H. Y., Kim, M. J, Seo, K. W., Lee, D. H., Choi, Y. H., Lim, D. J., Hur, Y. J., Cho, S. H., & Lee, B. K. (2006). An outbreak of inapparent non-O157 enterohemorrhagic Escherichia coli infection. Korean Journal of Medicine, 70(5), 495–504. https://www.koreamed.org/SearchBasic.php?RID=2305988
Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30(2), 285–293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
Reid, T. M. S. (2004). A Case Study of Cheese Associated E. coli 0157 Outbreaks in Scotland. In G. Duffy, P. Garvey, & D. McDowell (Eds.), Verocytotoxigenic Escherichia coli (2nd ed., pp. 201–212). Food & Nutricion Press. https://doi.org/10.1002/9780470385098.ch10
Reisner, A., Krogfelt, K. A., Klein, B. M., Zechner, E. L., & Molin, S. (2006). In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. Journal of Bacteriology, 188(10), 3572–3581. https://doi.org/10.1128/JB.188.10.3572-3581.2006
Ryu, J.-H., Kim, H., & Beuchat, L. R. (2004). Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature. Journal of Food Protection, 67(10), 2123–2131. https://doi.org/10.4315/0362-028x-67.10.2123
Sarshar, M., Scribano, D., Limongi., D., Zagaglia, C., Palamara, A. T., & Ambrosi, C. (2022). Adaptive strategies of uropathogenic Escherichia coli CFT073: from growth in lab media to virulence during host cell adhesion. International Microbiology, 25(3), 481–494. https://doi.org/10.1007/s10123-022-00235-y
Sarti, G. C., Cristóbal Miguez, A. E. J., & Curá, A. J. (2019) Optimización de las condiciones de cultivo para el desarrollo de una biopelícula bacteriana y su aplicación como biofertilizante en Solanum lycopersicum L. var. Río grande. Revista de Protección Vegetal, 34(2), E-ISSN: 2224-4697. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522019000200007
Sistema de Información Agropecuaria y Pesquera. (2021). Consulta de superficie sembrada de tomate rojo nacional año agrícola 2020. Retrieved February 13, 2021, from https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119
Skyberg, J. A., Siek, K. E., Doetkott, C., & Nolan, L. K. (2007). Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny. Journal of Applied Microbiology, 102(2), 548–554. https://doi.org/10.1111/j.1365-2672.2006.03076.x
Stepanović, S., Cirković, I., Ranin, L., & S✓vabić‐Vlahović, M. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 38(5), 428–432. https://doi.org/10.1111/j.1472-765X.2004.01513.x
Tamayo-Legorreta, E. M., García-Radilla, A., Moreno-Vázquez, E., Téllez-Figueroa, F., & Alpuche-Aranda, C. M. (2020). Diarrheagenic Escherichia coli pathotypes isolated from a swine farm in a region of Morelos state, Mexico. Salud Pública de México, 63(1), 34–41. https://doi.org/10.21149/11268
Torres Armendáriz, V., Manjarrez Domínguez, C. B., Acosta-Muñiz, C. H., Guerrero Prietto, V. M., Parra-Quezada, R. Á., Noriega Orozco, L. O., & Ávila-Quezada, G. D. (2016). Interactions between Escherichia coli O157:H7 and food plants. Has this bacterium developed internalization mechanisms? Revista Mexicana de Fitopatología, 34(1), 64–83. https://doi.org/10.18781/R.MEX.FIT.1507-4
Uhlich, G. A., Chen, C.-Y., Cottrell, B. J., Hofmann, C. S., Dudley, E. G., Strobaugh Jr., T. P., & Nguyen, L.-H. (2013). Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157 : H. Microbiology, 159(Pt 8), 1586–1596. https://doi.org/10.1099/mic.0.066118-0
Vanegas, M., Correa, N., Morales, A., Martínez, A., Rúgeles, L., & Jiménez, F. (2009). Resistencia a antibioticos de bacterias aisladas de biopelículas en una planta de alimentos. Revista MVZ Córdoba, 14(2), 1677–1683. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-02682009000200003
Wakimoto, N., Nishi, J., Sheikh, J., Nataro, J. P., Sarantuya, J., Iwashita, M., Manago, K., Tokuda, K., Yoshinaga, M., & Kawano, Y. (2004). Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. The American Journal of Tropical Medicine and Hygiene, 71(5), 687–690. https://pubmed.ncbi.nlm.nih.gov/15569806/
Wang, F., Yang, Q., Kase, J. A., Meng, J., Clotilde, L. M., Lin, A., & Ge, B. (2013). Current trends in detecting non-O157 shiga toxin–producing Escherichia coli in food. Foodborne Pathogens and Disease, 10(8), 665–677. https://doi.org/10.1089/fpd.2012.1448
Warriner, K., Ibrahim, F., Dickinson, M., Wright, C., & Waites, W. M. (2003). Internalization of human pathogens within growing salad vegetables. Biotechnology and Genetic Engineering Reviews, 20(1), 117–136. https://doi.org/10.1080/02648725.2003.10648040
Wright, K. M., Chapman, S., McGeachy, K., Humphris, S., Campbell, E., Toth, I. K., & Holden, N. J. (2013). The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology, 103(4), 333–340. https://doi.org/10.1094/PHYTO-08-12-0209-FI
Xicohtencatl-Cortes, J., Sánchez Chacón, E., Saldaña, Z., Freer, E., & Girón, J. A. (2009). Interaction of Escherichia coli O157:H7 with Leafy Green Produce. Journal of Food Protection, 72(7), 1531–1537. Revista Mexicana de Fitopatología. https://doi.org/10.4315/0362-028X-72.7.1531