Drying kinetics and thermodynamic properties of peanut seeds (Arachis hypogaea L.)

Autores

DOI:

https://doi.org/10.5327/fst.00405%20

Palavras-chave:

Drying rate, mathematical modeling, activation energy, enthalpy

Resumo

The aim of this study was to evaluate the drying process and determine the activation energy, effective diffusion coefficient, and thermodynamic properties of peanut seeds. The peanut seeds (variety “Amena 018”), harvested with an initial moisture content of 0.36 ± 0.003 kg kg-1 db, were dried in a forced circulation oven at temperatures of 40, 45, 50, 55, and 60°C until they reached a final moisture content of 0.11 ± 0.001 kg kg-1 db. The mathematical models were adjusted by nonlinear regression using the Gauss-Newton method, Akaike's information criterion (AIC), and Schwarz’s Bayesian information criterion (BIC). The two-term model showed the best fit for the temperatures of 40, 45, 50, and 55°C, and the two-term exponential for 60°C; the drying rate increased with increasing temperature and decreased with increasing drying time, the effective diffusion coefficient varied from 7.5097 × 10-11 to 11.5741 × 10-11 m2 s-1 for the 40-60°C range, and the activation energy was 18.54 kJ mol-1. The enthalpy, entropy, and Gibbs free energy values ranged from 15.931 to 15.765 kJ mol-1, -0.110401 to -0.110916 kJ mol-1 K-1, and 50.504-52.718 kJ mol-1, respectively, for temperatures from 40 to 60°C.

Downloads

Não há dados estatísticos.

Referências

Aguerre, R. J., Suarez, C., & Viollaz, P. E. (1989). New BET type multilayer sorption isotherms. Part II: Modelling water sorption in foods. LWT, 22(4), 192-195.

Araujo, W. D., Goneli, A. L. D., Corrêa, P. C., Hartmann Filho, C. P., & Martins, E. A. S. (2017). Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, 48(3), 448-457. https://doi.org/10.5935/1806-6690.20170052

Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1992). Drying and storage of grains and oilseeds. Springer Science & Business Media.

Coelho, A. P., de Faria, R. T., & Dalri, A. B. (2017). Ecophysiology and irrigation of the peanuts cultivated in second season. Applied Research & Agrotechnology, 10(2), 119-126.

Coradi, P. C., Milane, L. V., Dias, C. F., & Baio, F. H. R. (2015). Mathematical modeling of drying maize grains in different temperatures. Revista Brasileira de Milho e Sorgo, 14(2), 247-259. https://doi.org/10.18512/1980-6477/rbms.v14n2p247-259

Corrêa, P. C., Oliveira, G. H. H., Botelho, F. M., Goneli, A. L. D., & Carvalho, F. M. (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, 57(5), 595-601. https://doi.org/10.1590/S0034-737X2010000500005

Corrêa, P. C., Resende, O., Martinazzo, A. P., Goneli, A. L., & Botelho, F. M. (2007). Modelagem matemática para a descrição do processo de secagem do feijão (Phaseolus vulgaris L.) em camadas delgadas. Engenharia Agrícola, 27(2), 501-510. https://doi.org/10.1590/S0100-69162007000300020

FAOSTAT (2024). Food and Agriculture Organization of the Statistical Databases. Retrieved from https://www.fao.org/faostat/en/#data/QCL

Ferreira, W. N., Resende, O., Pinheiro, G. K., Silva, L. C. D. M., Souza, D. G., & Sousa, K. A. D. (2021). Modeling and thermodynamic properties of the drying of tamarind (Tamarindus indica L.) seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(1), 37-43. https://doi.org/10.1590/1807-1929/agriambi.v25n1p37-43

Gomes, F. P., Osvaldo, R., Sousa, E. P., de Oliveira, D. E., & Araújo Neto, F. R. D. (2018). Drying kinetics of crushed mass of ‘jambu’: Effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505

Gomes, F. P., Resende, O., Sousa, E. P. D., Célia, J. A., & de Oliveira, K. B. (2022). Application of mathematical models and thermodynamic properties in the drying of Jambu leaves. Agriculture, 12(8), 1252. https://doi.org/10.3390/agriculture12081252

Goneli, A. L. D., Corrêa, P. C., Afonso Júnior, P. C., & Oliveira, G. D. (2009). Cinética de secagem dos grãos de café descascados em camada delgada. Revista Brasileira de Armazenamento, 11(11), 64-73.

Isquierdo, E. P., Borém, F. M., de Andrade, E. T., Corrêa, J. L. G., de Oliveira, P. D., & Alves, G. E. (2013). Drying kinetics and quality of natural coffee. Transactions of the ASABE, 56(3), 995-1001. https://doi.org/10.13031/trans.56.9794

Jideani, V. A., & Mpotokwana, S. M. (2009). Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering, 92(2), 182-188. https://doi.org/10.1016/j.jfoodeng.2008.10.040

Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. https://doi.org/10.1016/j.jfoodeng.2005.09.007

Keneni, Y. G., Hvoslef-Eide, A. T., & Marchetti, J. M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial Crops and Products, 132, 12-20. https://doi.org/10.1016/j.indcrop.2019.02.012

Mabasso, G. A., Cabral, J. C. O., Barbosa, K. F., Resende, O., de Oliveira, D. E. C., & de Almeida, A. B. (2024). Drying kinetics, thermodynamic properties and physicochemical characteristics of Rue leaves. Scientific Reports, 14(1), 14526. https://doi.org/10.1038/s41598-024-64418-5

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3

Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas. ABRATES.

Martins, E. A., Lage, E. Z., Goneli, A. L., Hartmann Filho, C. P., & Lopes, J. G. (2015). Cinética de secagem de folhas de timbó (Serjania marginata Casar). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238-244. https://doi.org/10.1590/1807-1929/agriambi.v19n3p238-244

Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864

Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. https://doi.org/10.1016/j.jfoodeng.2004.04.023

Mohsenin, N. N. (1986). Physical characteristics: physical properties of plant and animal materials. Gordon and Breach Publishers.

Moreira, R., Chenlo, F., Torres, M. D., & Vallejo, N. (2008). Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88(4), 514-521. https://doi.org/10.1016/j.jfoodeng.2008.03.011

Moura, H. V., de Figueirêdo, R. M. F., de Melo Queiroz, A. J., de Vilela Silva, E. T., Esmero, J. A. D., & Lisbôa, J. F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapiá residues. Journal of Food Process Engineering, 44(8), e13768. https://doi.org/10.1111/jfpe.13768

Queiroz, L. A. F., Pinho, É. V. D. R. V., Oliveira, J. A., Ferreira, V. D. F., Carvalho, B. O., & Bueno, A. C. R. (2011). Época de colheita e secagem na qualidade de sementes de pimenta Habanero Yellow. Revista Brasileira de Sementes, 33(3), 472-481. https://doi.org/10.1590/S0101-31222011000300010

Resende, O., Ferreira, L. U., & Almeida, D. P. (2010). Modelagem matemática para descrição da cinética de secagem do feijão adzuki (Vigna angularis). Revista Brasileira de Produtos Agroindustriais, 12(2), 171-178. https://doi.org/10.15871/1517-8595/rbpa.v12n2p171-178

Settaluri, V. S., Kandala, C. V. K., Puppala, N., & Sundaram, J. (2012). Peanuts and their nutritional aspects: a review. Food and Nutrition Sciences, 3(12), 1644-1650. http://dx.doi.org/10.4236/fns.2012.312215

Silva, H. W., Soares, R. S., & Vale, L. S. R. (2015). Qualidade das sementes de pimenta dedo-de-moça em função do repouso pós-colheita dos frutos. Revista de Ciências Agrárias, 58(4), 427-433. https://doi.org/10.4322/rca.2129

Silva, I. L., da Silva, H. W., de Camargo, F. R., de Farias, H. F., & de Freitas, E. F. M. (2018). Secagem e difusividade de sementes de melão. Revista de Ciências Agrárias, 41(2), 309-315. https://doi.org/10.19084/RCA17278

Siqueira, V. C., Leite, R. A., Mabasso, G. A., Martins, E. A. S., Quequeto, W. D., & Isquierdo, E. P. (2020). Drying kinetics and effective diffusion of buckwheat grains. Ciência e Agrotecnologia, 44, e011320. https://doi.org/10.1590/1413-7054202044011320

Siqueira, V. C., Resende, O., & Chaves, T. H. (2012). Determination of the volumetric shrinkage in jatropha seeds during drying. Acta Scientiarum. Agronomy, 34(3), 231-238. https://doi.org/10.4025/actasciagron.v34i3.14402

Ullmann, R., Resende, O., Chaves, T. H., Oliveira, D. E. D., & Costa, L. M. (2015). Qualidade fisiológica das sementes de sorgo sacarino submetidas à secagem em diferentes condições de ar. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(1), 64-69. https://doi.org/10.1590/1807-1929/agriambi.v19n1p64-69

Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in Statistics-Simulation and Computation, 22(4), 1079-1106. https://doi.org/10.1080/03610919308813143

Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. https://doi.org/10.1080/07373939608917205

Downloads

Publicado

2025-01-29

Como Citar

MABASSO, G. A., RESENDE, O., AMADE, F. F., SIQUEIRA, V. C., & SOUZA, D. G. (2025). Drying kinetics and thermodynamic properties of peanut seeds (Arachis hypogaea L.) . Food Science and Technology, 45. https://doi.org/10.5327/fst.00405

Edição

Seção

Artigos Originais