Analysis and phytochemical profile of Amaranthus tricolor L. extract with antioxidative and antimicrobial properties

Autores

  • Jinfeng Yang Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou, Guangxi, China
  • Myong Jo Kim Bioherb Research Institute, Kangwon National University, Chuncheon, Republic of Korea https://orcid.org/0000-0003-4378-4071
  • Yong Soo Kwon Department of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
  • Weiling Chen Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou, Guangxi, China
  • Feilong Yin Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou, Guangxi, China

DOI:

https://doi.org/10.5327/fst.004823

Palavras-chave:

Amaranthus tricolor L., antioxidative activity, antimicrobial activity, phenolic compounds

Resumo

Amaranthus tricolor L. is a cultivated green vegetable, commonly known as amaranth, which is similar to spinach, broccoli, and cabbage. In the present study, we investigated the antioxidant and antimicrobial activities of the methanol extract and various fractions from A. tricolor. Results show that A. tricolor ethyl acetate (EtOAc) extract displayed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging activity (IC50=16.43±1.53 μg/ml), which was higher than that of the positive control, butyl hydroxy anisd (IC50=19.42±0.91 μg/ml). This extract had a reducing power of 2.743 at 0.5 mg/ml and significantly attenuated production of reactive oxygen species in a dose-dependent manner. Further bioassay-monitored fractionation of the EtOAc extract yielded two flavonoids, kaempferol (1) and quercetin (2), and one phenolic acid, gallic acid (3). We found that the antimicrobial activity of compound 3 (at a dose of 63 μg/mL) was superior to that of the tetracycline control (at a dose of 250 μg/mL) against Escherichia coli. Additionally, compounds 1 and 2 (at a dose of 63 μg/mL each) displayed higher activities against Penicillium oxalicum and Staphylococcus aureus than the control. These results suggest that A. tricolor extract may represent a promising nutraceutical source due to the antioxidant and antimicrobial properties of its phenolic compounds.

Downloads

Não há dados estatísticos.

Referências

Chen, A.Y., & Chen, Y.C. (2013). A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry, 138(4), 2099-107.

DOI: 10.1016/j.foodchem.2012.11.139

Chew, Y.L., Mahadi, A.M., Wong, K.M., & Goh, J.K. (2018). Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC Complementary and Alternative Medicine, 18, 70-78.

DOI: 10.1186/s12906-018-2137-5

Daglia, M.D., Lorenzo, A., Nabavi, S.F., Talas, Z.S., & Nabavi, S.M. (2014). Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat. Current Pharmaceutical Biotechnology, 15(4):362-72.

DOI: 10.2174/138920101504140825120737

Elisha, I.L., Botha, F.S., McGaw, L.J., & Eloff, J.N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17, 133-143.

DOI: 10.1186/s12906-017-1645-z

Feng, S. S., & Xu, J. G. (2014). Profile of antioxidant and antibacterial activities of different solvent extracts from Rabdosia rubescens. International Journal of Food Science & Technology, 49(11), 2506-2513. http://dx.doi.org/10.1111/ijfs.12576

Ferraro, M.J., Shortridge, D., & Reller, L.B. (2007). Detection of inducible clindamycin resistance in staphylococci by broth microdilution using erythromycin-clindamycin combination wells. Journal of Clinical Microbiology, 45, 12-15.

DOI: 10.1128/JCM.01501-07

Garcia-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sanchez-Campos, S., Tunon, M.J., & Gonzalez-Gallego, J. (2007). The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. European Journal of Pharmacology, 557, 221–229.

DOI:10.1016/j.ejphar.2006.11.014.

Ghosh, M., Kim, I.S., Lee, Y.M., Hong, S.M., Lee, T.H., Lim, J.H., Debnath, T., & Lim, B.O. (2018). The effects of Aronia melanocarpa 'Viking' extracts in attenuating RANKL-induced osteoclastic differentiation by inhibiting ROS generation and c-FOS/NFATc1 signaling. Molecules, 8, 23-42.

DOI: 10.3390/molecules23030615

Glasauer, A., & Chandel, N.S. (2014). Targeting antioxidants for cancer therapy. Biochem. Pharmacol.92:90-101.

DOI:10.1016/j.bcp.2014.07.017.

Liu, C.M., Kao, C.L., Wu, H.M., Li, W.J., Huang, C.T., Li, H.T., & Chen, C.Y. (2014). Antioxidant and Anticancer Aporphine Alkaloids from the Leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules, 19, 829-838. DOI:10.3390/molecules191117829

Liu, Q.M., & Jiang, J.G. (2012). Antioxidative activities of medicinal plants from TCM. Mini-reviews In Medicinal Chemistry, 12, 1154–1172.

DOI: 10.2174/138955712802762239

Liu, S.C., Zheng, X.L., Pan, J.F., Peng, L.Y., Cheng, C.H., Wang, X., & Zhao, C.L. (2019). RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLos One, 14, 52-56.

DOI: 10.1371/journal.pone.0216001

Maran, J. P., Priya, B., & Manikandan, S. (2014). Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. Journal of Food Science and Technology, 51(9), 1938-1946. http://dx.doi.org/10.1007/s13197-013-1237-y. PMid:25190849.

Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44, 307-315.

DOI:10.5264/eiyogakuzashi.44.307

Park, Y. K., Koo, M.H., Ikegaki M., & Contado, J.L. (1997). Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arquivos de Biologia e Tecnologia, 40, 97–106.

DOI:10.1111/exd.12118

Sahreen, S., Khan, M.R., & Khan, R.A. (2017). Evaluation of antioxidant profile of various solvent extracts of Carissa opaca leaves: an edible plant. Chemistry Central Journal, 11: 83-90.

DOI: 10.1186/s13065-017-0300-6

Sarker, U., & Oba, S. (2020). Leaf pigmentation, its profiles and radical scavenging activity in selected Amaranthus tricolor leafy vegetables. Scientific Reports. 2020, 10, 1-10.

https://doi.org/10.1038/s41598-020-66376-0

Singleton, V.L., & Roosi, J.A. (1964). Colorimetry of total phenoilcs with phosphomolypdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture , 16, 144-158.

DOI:doi:http://dx.doi.org/

Tinkel, J., Hassanain, H., & Khouri, S.J. (2012). Cardiovascular antioxidant therapy: A review of supplements, pharmacotherapies, and mechanisms. Cardiology in Review, 20, 77–83.

DOI: 10.1097/CRD.0b013e31823dbbad

Wang, F., Zhang, Y., Wu, S., He, Y., Dai, Z., Ma, S., & Liu, B. (2017). Studies of the structure antioxidant relationships and antioxidant activity mechanism of iridoid va lepotriates and their degradation products. PLos One, 12, 1-15.

DOI: 10.1371/journal.pone.0189198

Wang, H., & Joseph, J.A. (1999). Quantifying Cellular Oxidative Stress by Dichlorofluorescein Assay Using Microplate Reader. Free Radical Biology & Medicine, 27, 612-616.

DOI:info:doi/10.1016/S0891-5849(99)00107-0

Xiong, Q., Kadota, S., Tani, T., & Namba, T. (1996). Antioxidative effects of phenylethanoids from Cistanche deserticola. Biological & Pharmaceutical Bulletin, 19(12), 1580-1585.

DOI: 10.1248/bpb.19.1580

Yang, S.A., Im, N.K., Ji, Y.J., Yoo, D.C., Jhee, K.H., & Lee, I.S. (2008). Radical scavenging and inhibition of platelet function by a polyphenol rich fraction from Salvia miltiorrhiza Bunge. The Open Natural Products Journal, 1, 7-13.

DOI: 10.2174/1874848100801010007

Zhang, Y., Gao, K., Wang, C., & Liu, S.Q. (2021). A Novel Antibacterial Component and the Mechanisms of an Amaranthus tricolor Leaf Ethyl Acetate Extract against Acidovorax avenae subsp. Citrulli. International Journal of Molecular Sciences, 23, 28-32.

DOI: 10.3390/ijms23010312

Downloads

Publicado

2023-04-27

Como Citar

Yang, J., Kim, M. J., Kwon, Y. S., Chen, W., & Yin, F. (2023). Analysis and phytochemical profile of Amaranthus tricolor L. extract with antioxidative and antimicrobial properties. Food Science and Technology, 43. https://doi.org/10.5327/fst.004823

Edição

Seção

Artigos Originais