Gut microbiota dysbiosis in rats with LPS-induced liver diseases affected by Aronia melanocarpa polyphenols

Autores

DOI:

https://doi.org/10.5327/fst.130622

Palavras-chave:

Aronia melanocarpa, Polyphenols, Gut-liver axis, ; 16S rRNA sequencing

Resumo

It is well known that there is an imbalance of gut microbiota in liver diseases, our previous study has proved that Aronia melanocarpa polyphenols (AMPs) can modulate the gut microbiota and affect the progression of liver diseases. Here, we analyzed the gut microbiota by 16S rRNA sequencing and bioinformatic analysis to explored the changes of gut microbiota composition and functions after LPS and AMPs intervention. Our results showed that there were significant differences in the gut microbiota structure between different treatment groups, such as increasing the abundance of Lactobacillaceae and Muribaculaceae, decreasing the abundance of Ruminococcaceae and Acidaminococcaceae. Furthermore, PICRUSt prediction showed that 29 functional pathways have changed significantly which may promote the treatment of liver diseases. This study could help to supplement the information about the community of gut microbiota in liver diseases and provide a new strategy for the treatment of liver diseases.

Downloads

Não há dados estatísticos.

Referências

Cheng, J., Jiang, X., Li, J., Zhou, S., & Chen, H. (2019). Xyloglucan affects gut-liver circulating bile acid metabolism to improve liver damage in mice fed with high-fat diet. Journal of Functional Foods, 64, 103651.

Cheng, Z., Lin, J., Gao, N., Sun, X., & Li, B. (2020). Blueberry malvidin-3-galactoside modulated gut microbial dysbiosis and microbial TCA cycle KEGG pathway disrupted in a liver cancer model induced by HepG2 cells. Food Science and Human Wellness.

Deng, H., Zhu, J., Tong, Y., Kong, Y., & Meng, X. (2021). Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli. Lebensmittel-Wissenschaft und-Technologie, 150(2), 112018.

Dong, Z. (2020). Bifidobacterium breve ATCC15700 pretreatment prevents alcoholic liver disease through modulating gut microbiota in mice exposed to chronic alcohol intake. Journal of Functional Foods, 72.

Dongmin, Liu, Jianan, Huang, Yong, Luo, Beibei, Wen, Wenliang, & Hongliang. (2019). Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota. Journal of Agricultural and Food Chemistry, 67(49), 13589-13604.

Effect of Lipopolysaccharide on the Progression of Non-Alcoholic Fatty Liver Disease in High Caloric Diet-Fed Mice. (2016). Scandinavian Journal of Immunology, 83(2).

Eypa, B., Mvs, A., Hyl, C., Jhl, C., Kjm, C., & Am, A. (2021). Black chokeberry ( Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends in Food Science & Technology.

Han, H., Jiang, Y., Wang, M., Melaku, M., & Zhang, H. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): focusing on the gut-liver axis.

Hz, A., Kjl, A., Whc, B., Mrb, A., Bds, A., Zl, C., & Rhd, E. Advanced liver steatosis accompanies an increase in hepatic inflammation, colonic, secondary bile acids and Lactobacillaceae / Lachnospiraceae bacteria in C57BL/6 mice fed a high-fat diet. The Journal of Nutritional Biochemistry, 78.

Jian-Wen, Jiang, Xin-Hua, Chen, Zhi-Gang, Ren, Shu-Sen, & Zheng. (2018). Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary & pancreatic diseases international : HBPD INT.

Kokotkiewicz, Jaremicz, & Luczkiewicz. (2010). Aronia Plants:A Review of Traditional Use, Biological Activities, and Perspectives for Modern Medicine. J MED FOOD, 2010,13(2)(-), 255-269.

Kong, Y., Yan, T., Tong, Y., Deng, H., & Wang, Y. (2021). Gut Microbiota Modulation by Polyphenols from Aronia melanocarpa of LPS-Induced Liver Diseases in Rats. Journal of Agricultural and Food Chemistry.

Lee, G., You, H. J., Bajaj, J. S., Joo, S. K., & Ko, G. P. (2020). Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nature Communications, 11(1), 4982.

Lingshuai, Meng, Guang, Xin, Bin, Li, Dongnan, Xiyun, Sun, & Tingcai. (2018). Anthocyanins extracted from Aronia melanocarpa protect SH-SY5Y cells against amyloid-beta (1-42)-induced apoptosis by regulating Ca2+ homeostasis and inhibiting mitochondrial dysfunction. Journal of Agricultural & Food Chemistry.

Liu, X., & Jian, X. (2019). Calling a stage-based treatment model for chronic liver diseases in China mainland. Annals of hepatology: official journal of the Mexican Association of Hepatology.

Lu, Y., Wu, Y., Chen, X., Yang, X., & Xiao, H. (2020). Water extract of shepherd's purse prevents high-fructose induced-liver injury by regulating glucolipid metabolism and gut microbiota. Food Chemistry.

Luo, L. , Zhang, J. , Liu, M. , Qiu, S. , Yi, S. , & Yu, W. , et al. (2021). Monofloral triadica cochinchinensis honey polyphenols improve alcohol-induced liver disease by regulating the gut microbiota of mice. Frontiers in immunology, 12, 673903.wu

Macpherson, A., Heikenwalder, M., & Ganal-Vonarburg, S. (2016). The Liver at the Nexus of Host-Microbial Interactions. Cell Host & Microbe, 20(5), 561-571.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727-747.

Marra, F., & Svegliati-Baroni, G. (2017). Lipotoxicity and the gut-liver axis in NASH pathogenesis. Journal of Hepatology, 68(2).

Michail, S., Lin, M., Frey, M. R., Fanter, R., Paliy, O., Hilbush, B., & Reo, N. V. (2014). Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiology Ecology.

Mohammadmoradi, S., Javidan, A., & Kordi, J. (2014). Boom of probiotics: This time non-alcoholic fatty liver disease – A mini review. Journal of Functional Foods, 11, 30-35.

Mu, J. , Xin, G. , Zhang, B. , Wang, Y. , & Meng, X. . (2020). Beneficial effects of aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats. Journal of Food Science, 85(4).

Naggar, Y. A., & Wang, K. Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Frontiers in immunology, 12, 671150.

Peng, Y., Yan, Y., Wan, P., Chen, D., Ding, Y., Ran, L., Mi, J., Lu, L., Zhang, Z., & Li, X. (2019). Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biology and Medicine, 136, 96-108.

Tan, C., Kong, Y., Tong, Y., Deng, H., & Ma, Y. (2021). Anti-apoptotic effects of high hydrostatic pressure treated cyanidin-3-glucoside and blueberry pectin complexes on lipopolysaccharide-induced inflammation in Caco-2 cells. Journal of Functional Foods, 86(7), 104709.

Thomas, V., Clark, J., & Doré, J. (2015). Fecal microbiota analysis: An overview of sample collection methods and sequencing strategies. Future Microbiology, 10(9).

Tsai, M. C., Liu, Y. Y., Lin, C. C., Wang, C. C., Wu, Y. J., Yong, C. C., Chen, K. D., Chuah, S. K., Yao, C. C., & Huang, P. Y. (2020). Gut Microbiota Dysbiosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study in Taiwan. Nutrients, 12(3).

Tx, A., Wd, A., Zz, A., Sl, A., Yz, A., Bg, A., Yu, Z. A., Jyb, C., & Min, W. A. Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcohol-induced inflammation in mice. Food Research International, 140.

Valcheva-Kuzmanova, S. V., & Belcheva, A. (2006). Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Medica, 48(2), 11-17.

Wang, F., Fan, J., Zhang, Z., Gao, B., & Wang, H. (2015). The global burden of liver disease: The major impact of China. Hepatology (Baltimore, Md.), 60(6).

Wang, J., Li, X., Wu, X., Wang, Z., & Yan, T. (2021). Gut microbiota alterations associated with antibody-mediated rejection after kidney transplantation. Applied Microbiology and Biotechnology(7679).

Wang, R., Tang, R., Li, B., Ma, X., & Tilg, H. (2020). Gut microbiome, liver immunology, and liver diseases. Cellular & Molecular Immunology, 18(Suppl 1).

Wang, Z., Zeng, M., Wang, Z., Qin, F., & He, Z. Dietary Polyphenols to Combat Nonalcoholic Fatty Liver Disease via the Gut-Brain-Liver Axis: A Review of Possible Mechanisms. Journal of Agricultural and Food Chemistry, 69(12), 3585-3600.

Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S., & Jalan, R. (2018). targeting the gut-liver axis in liver disease clinical trial watch.

Wu, S., Hu, R., Nakano, H., Chen, K., Liu, M., He, X., Zhang, H., He, J., & Hou, D. X. (2018). Modulation of Gut Microbiota by Lonicera caerulea L. Berry Polyphenols in a Mouse Model of Fatty Liver Induced by High Fat Diet. Molecules, 23(12).

Xie, A., & Zou, D. (2013). Influence of polyphenol-plasma protein interaction on the antioxidant properties of polyphenols. Current Drug Metabolism, 14(4), -.

Xj, A., Yw, A., Yang, L. A., Yl, A., El, A., Xz, B., Qi, Z. A., Ying, F. A., Xm, A., & Bl, A. (2019). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota - ScienceDirect. The Journal of Nutritional Biochemistry.

Yuan, G., Tan, M., & Chen, X. (2021). Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food & Function, 12.

Zheng, B., Zhong, S., Tang, Y., & Chen, L. Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo. Food Chemistry, 310.

Downloads

Publicado

2023-05-09

Como Citar

Kong, Y., Li , D., & Meng, X. (2023). Gut microbiota dysbiosis in rats with LPS-induced liver diseases affected by Aronia melanocarpa polyphenols. Food Science and Technology, 43. https://doi.org/10.5327/fst.130622

Edição

Seção

Artigos Originais