Impact of the drying air conditions on the milling quality of a long-grain rice variety at different moisture content ranges using a lab-scale dryer
DOI:
https://doi.org/10.5327/fst.0028223Palavras-chave:
rice drying, drying conditions, glass transition temperature, stepwise drying programResumo
During the harvest season, rice needs to be dried immediately to prevent deterioration. Therefore, the rice industry must have the capacity to dry fast while minimizing the milling quality loss. The aim of this study was to assess the impact of drying processing variables on milling quality and drying duration, at different stages of drying. To this purpose, a thin-layer lab-scale dryer was used at different drying air temperatures, relative humidities (RH), and grain moisture content (MC) ranges. At MC up to 15%, it was possible to dry at a temperature of 47ºC and 27% RH maintaining a low milling quality loss. At lower MC, the drying air temperature should decrease to 35ºC and 50% RH to maintain the milling quality loss low. This condition increases the drying duration (compared with drying at 47ºC). Therefore, a two-stage drying program was proposed, using more severe drying conditions during the first stage (MC up to 15%) and softening the conditions during the final stage (MC from 15 to 13%). This drying program allows decreasing the drying duration, maintaining a low milling quality loss. The implementation of step-wise drying programs is expected to increase the efficiency of the commercial process.
Downloads
Referências
Assar, M., Golmohammadi, M., Rajabi-Hamaneh, M., & Hassankiadeh, M. N. (2016). A combined experimental and theoretical approach to study temperature and moisture dynamic characteristics of intermittent paddy rice drying. Chemical Engineering Communications, 203(9), 1242-1250. https://doi.org/10.1080/00986445.2016.1172483
Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1992). Drying and Storage of Grains and Oilseed. Van Nostrand Reinhold.
Buggenhout, J., Brijs, K., Celus, I., & Delcour, J.A. (2013). The breakage susceptibility of raw and parboiled rice: A review. Journal of Food Engineering, 117(3), 304-315. https://doi.org/10.1016/j.jfoodeng.2013.03.009
Cereals & Grains Association (AACC) (1999). AACC Approved Methods of Analysis (11th Ed.). Method 44-15.02. Moisture-Air Oven Methods. Cereals & Grains Association. https://doi.org/10.1094/AACCIntMethod-44-15.02
Chayjan, R. A., Ghasemi, A., & Sadeghi, M. (2019). Stress fissuring and process duration during rough rice convective drying affected by continuous and stepwise changes in air temperature. Drying Technology, 37(2), 198-207. https://doi.org/10.1080/07373937.2018.1445637
Chen, H., Siebenmorgen, T. J., & Marks, B. P. (1997). Relating drying rate constant to head rice yield reduction of long-grain rice. Transactions of the ASAE, 40(4), 1133-1139. https://doi.org/10.13031/2013.21331
Cnossen, A. G., & Siebenmorgen, T. J. (2000). The glass transition temperature concept in rice drying and tempering: effect on milling quality. Transactions of the ASAE, 43(6), 1661-1667. https://doi.org/10.13031/2013.3066
Cnossen, A. G., Siebenmorgen, T. J., & Yang, W. (2002). The glass transition temperature concept in rice drying and tempering: Effect on drying rate. Transactions of the ASAE, 45(3), 759-766. https://doi.org/10.13031/2013.8845
Fan, J., Siebenmorgen, T. J., & Yang, W. (2000). A study of the Head Rice Yield Reduction of long- and medium-grain rice varieties in relation to various harvest and drying conditions. Transactions of the ASAE, 43(6), 1709-1714. https://doi.org/10.13031/2013.3072
Franco, C. M. R., de Lima, A. G. B., Farias, V. S. O., & Silva, W. P. (2020). Modeling and experimentation of continuous and intermittent drying of rough rice grains. Heat and Mass Transfer, 56, 1003-1014. https://doi.org/10.1007/s00231-019-02773-0
Garcia-Llobodanin, L., Ponce de León, N., Moreira, S., & Billiris, A. (2020). Efecto de la variedad y de la humedad de cosecha en la temperatura de transición vítrea de variedades uruguayas de arroz. INNOTEC, (20), 106-116. https://doi.org/10.26461/20.01
Kunze, O. R., & Choudhury, M. S. U. (1972). Moisture adsorption related to the tensile strength of rice. Cereal Chemistry, 49(6), 684-696.
Liu, P., Yu, L., Wang, X., Li, D., Chen, L., & Li, X. (2010). Glass transition temperature of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 51(3), 388-391. https://doi.org/10.1016/j.jcs.2010.02.007
Luthra, K., & Sadaka, S. (2021). Investigation of rough rice drying in fixed and fluidized bed dryers utilizing dehumidified air as a drying agent. Drying Technology, 39(8), 1059-1073. https://doi.org/10.1080/07373937.2020.1741606
Maldaner, V., Coradi, P. C., Nunes, M. T., Müller, A., Carneiro, L. O., Teodoro, P. E., Teodoro, L. P. R., Bressiani, J., Anschau, K. F., & Müller, E. I. (2021). Effects of intermittent drying on physicochemical and morphological quality of rice and endospem of milled brown rice. LWT-Food Science and Technology, 152, 112334. https://doi.org/10.1016/j.lwt.2021.112334
Mukhopadhyay, S., & Siebenmorgen, T. (2018). Glass transition effects on milling yields in a cross-flow drying column. Drying Technology, 36(6), 723-735. https://doi.org/10.1080/07373937.2017.1351453
Odek, Z., Siebenmorgen, T. J., & Mauromoustakos, A. (2018). Relative impact of kernel thickness and moisture content on rice fissuring during drying. Applied Engineering in Agriculture, 34(1), 239-246. https://doi.org/10.13031/aea.12513
Ondier, G. O., Siebenmorgen, T. J., Bautista, R. C., & Mauromoustakos, A. (2011). Equilibrium moisture contents of pureline, hybrid, and parboiled rice. Transactions of the ASABE, 54(3), 1007-1013. https://doi.org/10.13031/2013.37085
Ondier, G. O., Siebenmorgen, T. J., & Mauromoustakos, A. (2012). Drying characteristics and milling quality of rough rice dried in a single pass incorporating glass transition principles. Drying Technology, 30(16), 1821-1830. https://doi.org/10.1080/07373937.2012.723085
Perdon, A., Siebenmorgen, T. J., & Mauromoustakos, A. (2000). Glassy state transition and rice drying: Development of a brown rice state diagram. Cereal Chemistry, 77(6), 708-713. https://doi.org/10.1094/CCHEM.2000.77.6.708
Sablani, S. S., Bruno, L., Kasapis, S., & Symaladevi, R. M. (2009). Thermal transitions of rice: Development of a state diagram. Journal of Food Engineering, 90(1), 110-118. https://doi.org/10.1016/j.jfoodeng.2008.06.008
Schluterman, D. A., & Siebenmorgen, T. J. (2007). Relating rough rice moisture content reduction and tempering duration to head rice yield reduction. Transactions of the ASABE, 50(1), 137-142. https://doi.org/10.13031/2013.22385
Siebenmorgen, T. J., Yang, W., & Sun, Z. (2004). Glass transition temperature of rice kernels determined by dynamic mechanical thermal analysis. Transactions of the ASAE, 47(3), 835-839. https://doi.org/10.13031/2013.16080
Xing-jun, L., Xin, W., Yang, L., Ping, J., & Hui, L. (2016). Changes in moisture effective diffusivity and glass transition temperature of paddy during drying. Computer and Electronics in Agriculture, 128, 112-119. https://doi.org/10.1016/j.compag.2016.08.025
Yang, W., & Jia, C. C. (2004). Glass transition mapping inside a rice kernel. Transactions of the ASAE, 47(6), 2009-2015. https://doi.org/10.13031/2013.17789
Yang, W., Jia, C. C., Siebenmorgen, T. J., Howell, T. A., & Cnossen, A. G. (2002). Intra-kernel moisture responses of rice to drying and tempering treatments by finite element simulation. Transactions of the ASAE, 45(4), 1037-1044. https://doi.org/10.13031/2013.9917
Yang, W., Jia, C. C., Siebenmorgen, T. J., Pan, Z., & Cnossen, A. G. (2003). Relationship of kernel moisture content gradients and glass transition temperatures to Head Rice Yield. Biosystems Engineering, 85(4), 467-476. https://doi.org/10.1016/S1537-5110(03)00091-6
Zeleznak, K. J., & Hoseney, R. C. (1987). The glass transition in starch. Cereal Chemistry, 64(2), 121-124.