Biochemical compounds and structure evaluation of cocoa liquors from different origins and their derivative chocolates

Autores

  • Vivian CHOW Universidade de São Paulo, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Biochemical Technology, São Paulo, SP, Brazil.
  • Paulo Henrique SANTOS Universidade de São Paulo, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Biochemical Technology, São Paulo, SP, Brazil. https://orcid.org/0000-0002-0739-6111
  • Rosângela TORRES Universidade de São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, São Paulo, SP, Brazil.
  • Jorge MANCINI FILHO Universidade de São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, São Paulo, SP, Brazil.
  • Suzana LANNES Universidade de São Paulo, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Biochemical Technology, São Paulo, SP, Brazil. https://orcid.org/0000-0002-4481-7376

DOI:

https://doi.org/10.5327/fst.24123

Palavras-chave:

biocompounds, rheology, thermal analysis, texture, nutrition

Resumo

Cocoa (Theobroma cacao L.) varieties have distinct characteristics that interfere with the quality of the chocolate produced. Cocoa liquors from Brazil and Peru were analyzed for bioactive compounds and physicochemical values, and dark chocolates were produced, evaluating their physical and physicochemical properties. Brazilian organic liquor showed higher phenolic content (4,403.63 mg GAE/100 g sample) and antioxidant activity (143.56 µg Trolox equivalent/g sample). Peruvian liquor cocoa butter has more palmitic acid (29.30%) and less stearic acid (32.92%), in the lower limit to oleic acid (32.92%) and the upper limit to linoleic acid (3.73%), and showed a higher content of saturated fatty acids (63.35%) and a lower content of monounsaturated acids (32.92%). Cocoa butter from organic liquor presented lower content of palmitic acid (24.01%), average stearic (34.71%) and oleic acids (35.81%), and higher content of linoleic acid (4.32%) and polyunsaturated acids (4.32%). Peruvian liquor showed higher melting point. Brazilian alkalized, organic liquors, and chocolates melting points showed no statistical difference (p > 0.05). The caramelization and carbonization points of all liquors did not show statistical differences (p > 0.05), as well as the caramelization point of all chocolates. The carbonization point was different (p < 0.05) for all chocolates. The chocolates were stable in terms of structure during storage, demonstrating the suitability for industrial production.

Downloads

Não há dados estatísticos.

Referências

Afoakwa, E. O. (2016). Chocolate science and technology (2nd ed.). Jonh Wiley & Sons Ltd. https://doi.org/10.1002/9781118913758

Afoakwa, E. O., Paterson, A., Fowler, M., & Vieira, J. (2008). Particle size distribution and compositional effects on textural properties and appearance of dark chocolates. Journal of Food Engineering, 87(2), 181-190. https://doi.org/10.1016/j.jfoodeng.2007.11.025

Afoakwa, E. O., Paterson, A., Fowler, M., & Vieira, J. (2009). Fat bloom development and structure-appearance relationships during storage of tempered dark chocolates. Journal of Food Engineering, 91(4), 571-581. https://doi.org/10.1016/j.jfoodeng.2008.10.011

Agibert, S. A. C., Lannes, S. C. S. (2018). Dark chocolate with a high oleic peanut oil microcapsule content. Journal of the Science of Food and Agriculture, 98(15), 5591-5597. https://doi.org/10.1002/jsfa.9102

Association of Official Analytical Chemists (AOAC). (2000). Official methods of analysis (17. ed.). AOAC.

Association of Official Analytical Chemists (AOAC). (2002). Official Methods of Analysis, no. 996.06. AOAC.

Beckett, S. T. (2009). Industrial chocolate manufacture and use (4th ed.). Wiley-Blackwell, 732 p.

Borchers, A. T., Keen, C. L., Hannum, S. M., & Gershwin, M. E. (2000). Cocoa and chocolate: composition, bioavailability, and health implications. Journal of Medicinal Food, 3(2), 77-105. https://doi.org/10.1089/109662000416285

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Bühler AG. (2011). MultiTherm™ Operating Manual. Bühler AG.

Carvalho, J. C. S., & Lannes, S. C. S. (2018). Improvement of nutritional and physicochemical proprieties of milk chocolates enriched with kale (Brassica olereacea var. acephala) and grape (Vitis vinífera). Food Science and Technology, 38(3), 551-560. https://doi.org/10.1590/fst.15018

De Pereny, S. G. L. (2015). The Peruvian Cocoa Value Chain’s Success: Fostering sustainable entrepreneurship, innovation, and social inclusion. In P. Sloan, W. Legrand, C. Hindley (eds.). The Routledge Handbook of Sustainable Food and Gastronomy. Routledge, p. 157.

Forte, M., Curro, S., Van de Walle, D., Dewettinck, K., Mirisola, M., Fasolato, L., & Carletti, P. (2023). Quality Evaluation of Fair-Trade Cocoa Beans from Different Origins Using Portable Near-Infrared Spectroscopy (NIRS). Foods, 12(1), 4. https://doi.org/10.3390/foods12010004

Genovese, M. I., & Lannes, S. C. S. (2009). Comparison of total phenolic content and antiradical capacity of powders and “chocolates” from cocoa and cupuassu. Food Science and Technology, 29(4), 810-814. https://doi.org/10.1590/S0101-20612009000400017

Grassia, M., Salvatori, G., Roberti, M., Planeta, D., & Cinquanta, L. (2019). Polyphenols, methylxanthines, fatty acids and minerals in cocoa beans and cocoa products. Journal of Food Measurement and Characterization, 13(3), 1721-1728. https://doi.org/10.1007/s11694-019-00089-5

Hartman, L., & Lago, R. C. A. (1973). Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practices, 22(6), 475-476.

Hernandez, C. E., & Granados, L. (2021). Quality differentiation of cocoa beans: implications for geographical indications. Journal of the Science of Food Agriculture, 101(10), 3993-4002. https://doi.org/10.1002/jsfa.11077

Jeri, A. N. D., Quintana, S. C., Otiniano, A. J., & Jimenez, N. V. (2023). Morphological and sensory attributes of native cocoa, Bagua, Peru. Revista de la Facultad de Agronomía de la Universidad del Zulia, 14(39), 64.

Lannes, S. C. S. (1997). Estudo das propriedades físico-químicas e de textura de chocolates [PhD Thesis]. Universidade de São Paulo. https://doi.org/10.11606/T.9.1997.tde-18102007-143658

Lannes, S. C. S. (2017). Chocolate and Cocoa Products as a Source of Health and Wellness. In G. V. Barbosa-Cánovas, G. Pastore, K. Candoğan, I. G. Medina Meza, S. Caetano Da Silva Lannes, K. Buckle, R. Yada, & A. Rosenthal (Eds.). Global Food Security and Wellness. Springer, p. 174-194.

Lipp, M., & Anklam, E. (1998). Review of Cocoa Butter and Alternative Fats for Use in Chocolate—Part A. Compositional Data. Food Chemistry, 62(1), 73-79. https://doi.org/10.1016/S0308-8146(97)00160-X

Lorenzo, N. D., Santos, O. V., & Lannes, S. C. S. (2022). Structure and nutrition of dark chocolate with pequi mesocarp (Caryocar villosum (Alb.) Pers.). Food Science and Technology, 42, e88021. https://doi.org/10.1590/fst.88021

Ndife, J., Bolaji, P., Atoyebi, D., & Umezuruike, C. (2013). Production and quality evaluation of cocoa products (plain cocoa powder and chocolate). American Journal of Food and Nutrition, 3(1), 31-38.

Ostrowska-Ligeza, E., Marzec, A., Górska, A., Wirjowska-Wojdyla, M., Brys, J., Rejch, A., Czarkowska, K. (2019). A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochimica Acta, 671, 60-69. https://doi.org/10.1016/j.tca.2018.11.005

Peru (2007). Ministry of Foreign Trade and Tourism. Cacao in Peru – a Rising Star. Ministry of Foreign Trade and Tourism. Retrieved from https://boletines.exportemos.pe/recursos/boletin/bd3f5576-5af0-448f-a951-7dfe07816f90.pdf

Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Boxin Ou, B., & Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL)) of plasma and other biological and food samples. Journal of the Agriculture and Food Chemistry, 51(11), 3273-3279. https://doi.org/10.1021/jf0262256

Richter, M., & Lannes, S. C. S. (2007). Ingredients used in chocolate industry. Revista Brasileira de Ciências Farmacêuticas, 43(3), 357-369. https://doi.org/10.1590/S1516-93322007000300005

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006). Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). EMBRAPA.

Saputro, A. D., Walle D., Caiquo, B. A., Hinneh, M., Kluczykoff, M., & Dewettinck, K. (2019). Rheological behaviour and microstructural properties of dark chocolate produced by combination of a ball mill and a liquefier device as small scale chocolate production system. LWT-Food Science and Technology, 100, 10-19. https://doi.org/10.1016/j.lwt.2018.10.039

Schetty, O., Anker, P., Junker, E., & Kleinert, J. (1969). Schweizerisches Iebens-mittelbuch (5th ed.). Bundesamt für Gesundheit (v. 3, pp. 47-51). Abteilung Lebensmittelsicherheit.

Singleton, V. L., Orhofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocautues reagent. Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Talbot, G. (2012). Chocolate and cocoa butter—Structure and composition. In N. Garti & N. R. Widlak (eds.). Cocoa butter and related compounds (pp. 1-33). AOCS Press.

Zoumas, B. L., Azzara, C. D., & Bouzas, J. (2000). Chocolate and cocoa. In K. Othmer (ed.). Kirk‐Othmer Encyclopedia of Chemical Technology (pp. 1-24). Wiley.

Downloads

Publicado

2023-11-30

Como Citar

CHOW, V., SANTOS, P. H., TORRES, R., MANCINI FILHO, J., & LANNES, S. (2023). Biochemical compounds and structure evaluation of cocoa liquors from different origins and their derivative chocolates . Food Science and Technology, 43. https://doi.org/10.5327/fst.24123

Edição

Seção

Artigos Originais