Effects of electron beam irradiation on microbial contamination and quality of Astragali Radix

Autores

  • Meng Fu College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China https://orcid.org/0000-0002-4032-2704
  • Dan Wang College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
  • Gang Wang College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
  • Ming Huang Sichuan Institute Atomic Energy, Chengdu 610101, Sichuan, P.R. China
  • Yiweng Tang College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China

DOI:

https://doi.org/10.5327/fst.129022

Palavras-chave:

Astragali radix (AR), Decontamination by electron beam irradiation, High-Performance Liquid Chromatogram (HPLC), Active ingredients, Quality Ingredients

Resumo

In this study, astragali radix (AR) was irradiated at doses of 3, 5, 7, 10 and 18 kGy of electron-beam, to investigate the effects on the microbial content, physicochemical quality, and antioxidant activity. Results showed that AR was decontaminated at 7 kGy irradiation, but its color was altered. The total flavonoid, total phenol content, DPPH and ABTS radical scavenging ability increased with an increase in radiation dose for AR. In conclusion, electron beam irradiation can effectively kill the surface microorganisms of AR, increase the contents of flavonoids and total phenols, and increase its free radical scavenging activity without affecting its main active components.

Downloads

Não há dados estatísticos.

Referências

Qiu L., Zhang M., Mujumdar A. S., and Liu Y. (2020). Recent developments in key processing techniques for oriental spices/herbs and condiments: a review. Food Reviews International. https://doi.org/10.1080/87559129.2020.1839492.

Liu P., Zhao H., and Luo Y. (2017). Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging and Disease. 8(6), 868-886. https://doi.org/10.14336/ad.2017.0816.

Zhang W., Cui Y., Liu Z., Wang S., Yang A., Li X., and Zhang J. (2022). Astragalus membranaceus ultrafine powder alleviates hyperuricemia by regulating the gut microbiome and reversing bile acid and adrenal hormone biosynthesis dysregulation. Arabian Journal of Chemistry. 15(9), 103970. https://doi.org/10.1016/j.arabjc.2022.103970.

Ocloo F. C. K., Appiah V., Asantewaa B., and Quayson E. T. (2023). Microbial quality of gamma-irradiated dried Roselle (Hibiscus sabdariffa L.) calyx powder. Radiation Physics and Chemistry. 202. https://doi.org/10.1016/j.radphyschem.2022.110519.

Pereira E., Antonio A. L., Rafalski A., Barreira J. C. M., Barros L., Oliveira M. B. P. P., and Ferreira I. C. F. R. (2017). Electron-beam irradiation as an alternative to preserve nutritional, chemical and antioxidant properties of dried plants during extended storage periods. LWT - Food Science and Technology. 82, 386-395. https://doi.org/10.1016/j.lwt.2017.04.069.

Wei Q., Mei J., and Xie J. (2022). Application of electron beam irradiation as a non-thermal technology in seafood preservation. LWT, 113994. https://doi.org/10.1016/j.lwt.2022.113994.

Kim S. E., Park S. Y., Rui M.-l., and Ha S.-D. (2017). Effects of electron beam irradiation on murine norovirus-1 in abalone (Haliotis discus hannai) meat and viscera. LWT. 86, 611-618. https://doi.org/10.1016/j.lwt.2017.08.058.

Hwang K.-E., Ham Y.-K., Song D.-H., Kim H.-W., Lee M.-A., Jeong J.-Y., and Choi Y.-S. (2021). Effect of gamma-ray, electron-beam, and X-ray irradiation on antioxidant activity of mugwort extracts. Radiation Physics and Chemistry. 186. https://doi.org/10.1016/j.radphyschem.2021.109476.

Pillai S. D. and Pillai E. T., 2021, Agriculture: Electron Beam Irradiation Technology Applications in the Food Industry, in Encyclopedia of Nuclear Energy, Elsevier, Oxford. DOI:https://doi.org/10.1016/B978-0-12-819725-7.00141-0.

Luo Z., Ni K., Zhou Y., Chang G., Yu J., Zhang C., Yin W., Chen D., Li S., Kuang S., Zhang P., Li K., Bai J., and Wang X. (2023). Inactivation of two SARS-CoV-2 virus surrogates by electron beam irradiation on large yellow croaker slices and their packaging surfaces. Food Control. 144, 109340. https://doi.org/10.1016/j.foodcont.2022.109340.

Schottroff F., Lasarus T., Stupak M., Hajslova J., Fauster T., and Jäger H. (2021). Decontamination of herbs and spices by gamma irradiation and low-energy electron beam treatments and influence on product characteristics upon storage. Journal of Radiation Research and Applied Sciences. 14(1), 380-395. https://doi.org/10.1080/16878507.2021.1981112.

Rodrigues F. T., Ramos Koike A. C., Galo da Silva P., Negrão B. G., Matias de Alencar S., Filho J. M., and Villavicencio A. L. C. H. (2021). Effects of electron beam irradiation on the bioactive components of goji-berry. Radiation Physics and Chemistry. 179. https://doi.org/10.1016/j.radphyschem.2020.109144.

Jin Y.-y., Shin H., Ku K., and Song K. B. (2006). Effect of Electron Beam Irradiation on Microbial Growth and Qualities on Astragalus membranaceus. Journal of Applied Biological Chemistry. 49(4), 176-179.

Liu Y., Liu J., Wu K. X., Guo X. R., and Tang Z. H. (2018). A rapid method for sensitive profiling of bioactive triterpene and flavonoid from Astragalus mongholicus and Astragalus membranaceus by ultra-pressure liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 1085, 110-118. https://doi.org/10.1016/j.jchromb.2018.03.044.

Zhang C. E., Liang L. J., Yu X. H., Wu H., Tu P. F., Ma Z. J., and Zhao K. J. (2019). Quality assessment of Astragali Radix from different production areas by simultaneous determination of thirteen major compounds using tandem UV/charged aerosol detector. J Pharm Biomed Anal. 165, 233-241. https://doi.org/10.1016/j.jpba.2018.12.015.

Jacobs G. P. (2022). Irradiation of pharmaceuticals: A literature review. Radiation Physics and Chemistry. 190, 109795. https://doi.org/10.1016/j.radphyschem.2021.109795.

Commission C. P., 2020, Pharmacopoeia of the People's Republic of China. China Medical Science and Technology Press. Beijing.

Liu X. M., Liu Y., Shan C. H., Yang X. Q., Zhang Q., Xu N., Xu L. Y., and Song W. (2022). Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem X. 14, 100287. https://doi.org/10.1016/j.fochx.2022.100287.

Rather S. A., Hussain P. R., Suradkar P. P., Ayob O., Sanyal B., Tillu A., Chaudhary N., Chavan R. B., and Ghosh S. K. (2019). Comparison of gamma and electron beam irradiation for using phyto-sanitary treatment and improving physico-chemical quality of dried apricot and quince. Journal of Radiation Research and Applied Sciences. 12(1), 245-259. https://doi.org/10.1080/16878507.2019.1650223.

Egea M. I., Sánchez-Bel P., Martínez-Madrid M. C., Flores F. B., and Romojaro F. (2007). The effect of beta ionization on the antioxidant potential of ‘Búlida’ apricot and its relationship with quality. Postharvest Biology and Technology. 46(1), 63-70. https://doi.org/10.1016/j.postharvbio.2007.04.002.

Kyung H.-K., Ramakrishnan S. R., and Kwon J.-H. (2019). Dose rates of electron beam and gamma ray irradiation affect microbial decontamination and quality changes in dried red pepper (Capsicum annuum L.) powder. Journal of the Science of Food and Agriculture. 99(2), 632-638. https://doi.org/10.1002/jsfa.9225.

Young K. W. and Whittle K. J. (1985). Colour measurement of fish minces using hunter L, a, b values. Journal of the Science of Food & Agriculture. 36(5), 383-392. https://doi.org/10.1002/jsfa.2740360511.

Barkaoui S., Mankai M., Miloud N. B., Kraïem M., Madureira J., Verde S. C., and Boudhrioua N. (2021). E-beam irradiation of strawberries: Investigation of microbiological, physicochemical, sensory acceptance properties and bioactive content. Innovative Food Science & Emerging Technologies. 73. https://doi.org/10.1016/j.ifset.2021.102769.

Jung K., Song B.-S., Kim M. J., Moon B.-G., Go S.-M., Kim J.-K., Lee Y.-J., and Park J.-H. (2015). Effect of X-ray, gamma ray, and electron beam irradiation on the hygienic and physicochemical qualities of red pepper powder. LWT-FOOD SCIENCE AND TECHNOLOGY. 63(2), 846-851. https://doi.org/10.1016/j.lwt.2015.04.030.

He Y., Wang D., Mei X., Wang H., Liu L., Gao P., and Huang M. (2021). Effects of Electron-Beam Irradiation on Quality and Antioxidant Properties of Ophiopogon japonicus. Journal of Nuclear Agricultural Sciences. 35(8), 1816-1824. https://doi.org/10.11869/j.issn.100-8551.2021.08.1816.

Chen Q., Shi Z., Wang Y., Zhang R., and Hu H. (2021). Study on effects of sweating treatment and different drying methods on the quality of Gentianae macrophyllae Radix. SCIENTIFIC REPORTS. 11(1). https://doi.org/10.1038/s41598-021-88511-1.

Sablania V., Bosco S. J. D., and Bashir M. (2019). Extraction process optimization of Murraya koenigii leaf extracts and antioxidant properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE. 56(12), 5500-5508. https://doi.org/10.1007/s13197-019-04022-y.

Krishnan V., Gothwal S., Dahuja A., Vinutha T., Singh B., Jolly M., Praveen S., and Sachdev A. (2018). Enhanced nutraceutical potential of gamma irradiated black soybean extracts. Food Chemistry. 245, 246-253. https://doi.org/10.1016/j.foodchem.2017.10.099.

Jia W., Yang Y., Liu S., and Shi L. (2022). Molecular mechanisms of the irradiation-induced accumulation of polyphenols in star anise (Illicium verum Hook. f.). Journal of Food Composition and Analysis. 105. https://doi.org/10.1016/j.jfca.2021.104233.

Krongrawa W., Limmatvapirat S., Saibua S., and Limmatvapirat C. (2020). Effects of gamma irradiation under vacuum and air packaging atmospheres on the phytochemical contents, biological activities, and microbial loads of Kaempferia parviflora rhizomes. Radiation Physics and Chemistry. 173. https://doi.org/10.1016/j.radphyschem.2020.108947.

Khattak K. F. and Rahman T. U. (2016). Effect of gamma irradiation on the vitamins, phytochemicals, antimicrobial and antioxidant properties of Ziziphus mauritiana Lam. leaves. Radiation Physics and Chemistry. 127, 243-248. https://doi.org/10.1016/j.radphyschem.2016.07.001.

Guo X., Liu Q., Du J., Guo Y., Hu X., Yu J., Bai J., Li X., and Kou L. (2022). X-rays irradiation affects flavonoid synthesis and delays reddening of winter jujube (Zizyphus jujuba Mill. cv. Dalidongzao) during cold storage. Postharvest Biology and Technology. 193, 112048. https://doi.org/10.1016/j.postharvbio.2022.112048.

Esmaeili S., Barzegar M., Sahari M. A., and Berengi-Ardestani S. (2018). Effect of gamma irradiation under various atmospheres of packaging on the microbial and physicochemical properties of turmeric powder. Radiation Physics and Chemistry. 148, 60-67. https://doi.org/10.1016/j.radphyschem.2018.02.028.

Zhang L., Qi X., Lu X.-t., Cui C.-b., and Gao X.-f. (2022). Study on hypoglycemic effects of irradiated ginseng adventitious roots. Food Chemistry: X. 13, 100234. https://doi.org/10.1016/j.fochx.2022.100234.

Wu S., Shen D., Wang R., Li Q., Mo R., Zheng Y., Zhou Y., and Liu Y. (2021). Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chemistry. 350, 129217. https://doi.org/10.1016/j.foodchem.2021.129217.

Cho B.-O., Che D. N., Yin H.-H., and Jang S.-I. (2017). Gamma irradiation enhances biological activities of mulberry leaf extract. Radiation Physics and Chemistry. 133, 21-27. https://doi.org/10.1016/j.radphyschem.2016.11.013.

Quan W., Qie X., Chen Y., Zeng M., Qin F., Chen J., and He Z. (2020). Effect of milk addition and processing on the antioxidant capacity and phenolic bioaccessibility of coffee by using an in vitro gastrointestinal digestion model. Food Chemistry. 308, 125598. https://doi.org/10.1016/j.foodchem.2019.125598.

Elias M. I., Madureira J., Santos P. M. P., Carolino M. M., Margaça F. M. A., and Cabo Verde S. (2020). Preservation treatment of fresh raspberries by e-beam irradiation. Innovative Food Science & Emerging Technologies. 66, 102487. https://doi.org/10.1016/j.ifset.2020.102487.

Alothman M., Bhat R., and Karim A. A. (2009). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology. 20(5), 201-212. https://doi.org/10.1016/j.tifs.2009.02.003.

Luo X., Du Z., Yang K., Wang J., Zhou J., Liu J., and Chen Z. (2021). Effect of electron beam irradiation on phytochemical composition, lipase activity and fatty acid of quinoa. Journal of Cereal Science. 98. https://doi.org/10.1016/j.jcs.2021.103161.

Kishor Kumar K., Arul AnanthaKumar A., Ahmad R., Adhikari S., Variyar P. S., and Sharma A. (2010). Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia). Food Chemistry. 122(3), 841-845. https://doi.org/10.1016/j.foodchem.2010.03.006.

Yang K., Li K., Pan L., Luo X., Xing J., Wang J., Wang L., Wang R., Zhai Y., and Chen Z. (2020). Effect of Ozone and Electron Beam Irradiation on Degradation of Zearalenone and Ochratoxin A. Toxins (Basel). 12(2). https://doi.org/10.3390/toxins12020138.

Gong D., Chen J., Sun Y., Liu X., and Sun G. (2021). Multiple wavelengths maximization fusion fingerprint profiling for quality evaluation of compound liquorice tablets and related antioxidant activity analysis. Microchemical Journal. 160, 105671. https://doi.org/10.1016/j.microc.2020.105671.

Liu W., Yin D.-x., Tang N., Zhang T., Wang J., Qin D.-h., and Zhang Z. (2021). Quality evaluation of Sinopodophyllum hexandrum (Royle) Ying based on active compounds, bioactivities and RP-HPLC fingerprint. Industrial Crops and Products. 174, 114159. https://doi.org/10.1016/j.indcrop.2021.114159.

Wang G., Wang D., Qing C., Chen L., Gao P., and Huang M. (2022). Impacts of electron-beam-irradiation on microstructure and physical properties of yam (Dioscorea opposita Thunb.) flour. Lwt. 163. https://doi.org/10.1016/j.lwt.2022.113531.

Downloads

Publicado

2023-11-01

Como Citar

Fu, M., Wang, D., Wang, G., Huang, M., & Tang, Y. (2023). Effects of electron beam irradiation on microbial contamination and quality of Astragali Radix. Food Science and Technology, 43. https://doi.org/10.5327/fst.129022

Edição

Seção

Artigos Originais