Investigation of the effect of hawthorn after thermal processing on functional dyspepsia based on fecal metabolomics and gut microbiota

Autores

  • Lilin Zhang School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China https://orcid.org/0000-0001-8298-7993
  • Yao Tian School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
  • Qi Liang School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
  • Chunjie Wu Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu, P.R. China https://orcid.org/0000-0001-7496-8469
  • Li AI School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China https://orcid.org/0000-0002-6506-0683

DOI:

https://doi.org/10.5327/fst.002823

Palavras-chave:

hawthorn, functional dyspepsia, gut microbiota, fecal metabolomics, thermal processing

Resumo

Hawthorn is an important medicine food homology (MFH) species. Charred hawthorn (CH) is derived from the thermal processing of raw hawthorn (RH). Traditional Chinese medicine theory suggests that CH has a stronger effect to promote digestion than RH. In this study, based on the functional dyspepsia (FD) model in rats, the effects of RH and CH on gastrointestinal motility were investigated, and the mechanism of action was revealed from the perspectives of gut microbiota and metabolomics. FD model was established by various stimulation and chronic induction methods for 21 days. After 7 days of intervention, CH could improve the gastric emptying rate and intestinal propulsion rate; correct the abnormal levels of 20 different metabolites in the feces; regulate the metabolic pathways of vitamin A and niacin; increase the diversity and richness of intestinal microbiota and adjust the structure and composition of gut microbiota in FD rats. And the effect of CH is better than RH. The results of this study show that CH can better modulate the metabolites and gut microbiota of rats with FD, to provide a theoretical basis for the development of dietary therapy of hawthorn as a treatment plan or adjuvant treatment for FD.

Downloads

Não há dados estatísticos.

Referências

Ai, L., Zhang, L., Liang, Q., Tian, Y., Chen, T., & Wu C (2022) Investigation of the improving effect of raw and charred hawthorn on functional dyspepsia based on interstitial cells of Cajal. Front. Sustain. Food Syst. 6:1010556. doi: 10.3389/fsufs.2022.1010556

Al-Saffar, A., Takemi, S., Saaed, H. K., Sakata, I., & Sakai, T. (2019). Utility of animal gastrointestinal motility and transit models in functional gastrointestinal disorders. Best practice & research. Clinical gastroenterology, 40-41, 101633. https://doi.org/10.1016/j.bpg.2019.101633

Bar-El Dadon, S., & Reifen, R. (2017). Vitamin A and the epigenome. Critical reviews in food science and nutrition, 57(11), 2404–2411. https://doi.org/10.1080/10408398.2015.1060940

Cantorna, M. T., Snyder, L., & Arora, J. (2019). Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical reviews in biochemistry and molecular biology, 54(2), 184–192. https://doi.org/10.1080/10409238.2019.1611734

Chang, Q., Zuo, Z., Harrison, F., & Chow, M. S. (2002). Hawthorn. Journal of clinical pharmacology, 42(6), 605–612. https://doi.org/10.1177/00970002042006003

Dawson M. I. (2000). The importance of vitamin A in nutrition. Current pharmaceutical design, 6(3), 311–325. https://doi.org/10.2174/1381612003401190

De Wit, N., Derrien, M., Bosch-Vermeulen, H., Oosterink, E., Keshtkar, S., Duval, C., de Vogel-van den Bosch, J., Kleerebezem, M., Müller, M., & van der Meer, R. (2012). Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. American journal of physiology. Gastrointestinal and liver physiology, 303(5), G589–G599. https://doi.org/10.1152/ajpgi.00488.2011

Ford, A. C., Mahadeva, S., Carbone, M. F., Lacy, B. E., & Talley, N. J. (2020). Functional dyspepsia. Lancet (London, England), 396(10263), 1689–1702. https://doi.org/10.1016/S0140-6736(20)30469-4

Gong, X., Ji, M., Xu, J., Zhang, C., & Li, M. (2020). Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Critical reviews in food science and nutrition, 60(14), 2303–2326. https://doi.org/10.1080/10408398.2019.1634517

Hantoro, I. F., Syam, A. F., Mudjaddid, E., Setiati, S., & Abdullah, M. (2018). Factors associated with health-related quality of life in patients with functional dyspepsia. Health and quality of life outcomes, 16(1), 83. https://doi.org/10.1186/s12955-018-0913-z

Heischmann, S., Quinn, K., Cruickshank-Quinn, C., Liang, L. P., Reisdorph, R., Reisdorph, N., & Patel, M. (2016). Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis. Scientific reports, 6, 31424. https://doi.org/10.1038/srep31424

Hills, R. D., Jr, Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 11(7), 1613. https://doi.org/10.3390/nu11071613

Hou, Y., & Jiang, J. G. (2013). Origin and concept of medicine food homology and its application in modern functional foods. Food & function, 4(12), 1727–1741. https://doi.org/10.1039/c3fo60295h

Jia, S., Wang, Y., Hu, J., Ding, Z., Liang, Q., Zhang, Y., & Wang, H. (2016). Mineral and metabolic profiles in tea leaves and flowers during flower development. Plant physiology and biochemistry: PPB, 106, 316–326. https://doi.org/10.1016/j.plaphy.2016.06.013

Kanzler, C., & Haase, P. T. (2020). Melanoidins Formed by Heterocyclic Maillard Reaction Intermediates via Aldol Reaction and Michael Addition. Journal of agricultural and food chemistry, 68(1), 332–339. https://doi.org/10.1021/acs.jafc.9b06258

Karunaratne, T. B., Okereke, C., Seamon, M., Purohit, S., Wakade, C., & Sharma, A. (2020). Niacin and Butyrate: Nutraceuticals Targeting Dysbiosis and Intestinal Permeability in Parkinson's Disease. Nutrients, 13(1), 28. https://doi.org/10.3390/nu13010028

Kirkland, J. B., & Meyer-Ficca, M. L. (2018). Niacin. Advances in food and nutrition research, 83, 83–149. https://doi.org/10.1016/bs.afnr.2017.11.003

Lankelma, J. M., van Vught, L. A., Belzer, C., Schultz, M. J., van der Poll, T., de Vos, W. M., & Wiersinga, W. J. (2017). Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive care medicine, 43(1), 59–68. https://doi.org/10.1007/s00134-016-4613-z

Li, Y., Yan, H., Zhang, Y., Li, Q., Yu, L., Li, Q., Liu, C., Xie, Y., Chen, K., Ye, F., Wang, K., Chen, L., & Ding, Y. (2020). Alterations of the Gut Microbiome Composition and Lipid Metabolic Profile in Radiation Enteritis. Frontiers in cellular and infection microbiology, 10, 541178. https://doi.org/10.3389/fcimb.2020.541178

Liang, C., Zhou, X. H., Jiao, Y. H., Guo, M. J., Meng, L., Gong, P. M., Lyu, L. Z., Niu, H. Y., Wu, Y. F., Chen, S. W., Han, X., & Zhang, L. W. (2021). Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Molecular nutrition & food research, 65(17), e2100136. https://doi.org/10.1002/mnfr.202100136

Liu, S., Qiu, Y., Gu, F., Xu, X., Wu, S., Jin, Z., Wang, L., Gao, K., Zhu, C., Yang, X., & Jiang, Z. (2022). Niacin Improves Intestinal Health through Up-Regulation of AQPs Expression Induced by GPR109A. International journal of molecular sciences, 23(15), 8332. https://doi.org/10.3390/ijms23158332

Lu, Q., Li, R., Yang, Y., Zhang, Y., Zhao, Q., & Li, J. (2022). Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chemistry, 368, 130610. https://doi.org/10.1016/j.foodchem.2021.130610

Luo, D., Chen, K., Li, J., Fang, Z., Pang, H., Yin, Y., Rong, X., & Guo, J. (2020). Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 121, 109550. https://doi.org/10.1016/j.biopha.2019.109550

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., & Balamurugan, R. (2020). The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 12(5), 1474. https://doi.org/10.3390/nu12051474

Nooshkam, M., Varidi, M., & Bashash, M. (2019). The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644–660. https://doi.org/10.1016/j.foodchem.2018.09.083

Pearlman, M., & Akpotaire, O. (2019). Diet and the Role of Food in Common Gastrointestinal Diseases. The Medical clinics of North America, 103(1), 101–110. https://doi.org/10.1016/j.mcna.2018.08.008

Saviano, A., Brigida, M., Migneco, A., Gunawardena, G., Zanza, C., Candelli, M., Franceschi, F., & Ojetti, V. (2021). Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin?. Medicina (Kaunas, Lithuania), 57(7), 643. https://doi.org/10.3390/medicina57070643

Song, D. X., & Jiang, J. G. (2017). Hypolipidemic Components from Medicine Food Homology Species Used in China: Pharmacological and Health Effects. Archives of medical research, 48(7), 569–581. https://doi.org/10.1016/j.arcmed.2018.01.004

Tack, J., & Camilleri, M. (2018). New developments in the treatment of gastroparesis and functional dyspepsia. Current opinion in pharmacology, 43, 111–117. https://doi.org/10.1016/j.coph.2018.08.015

Tziatzios, G., Gkolfakis, P., Papanikolaou, I. S., Mathur, R., Pimentel, M., Giamarellos-Bourboulis, E. J., & Triantafyllou, K. (2020). Gut Microbiota Dysbiosis in Functional Dyspepsia. Microorganisms, 8(5), 691. https://doi.org/10.3390/microorganisms8050691

Want, E. J., Masson, P., Michopoulos, F., Wilson, I. D., Theodoridis, G., Plumb, R. S., Shockcor, J., Loftus, N., Holmes, E., & Nicholson, J. K. (2013). Global metabolic profiling of animal and human tissues via UPLC-MS. Nature protocols, 8(1), 17–32. https://doi.org/10.1038/nprot.2012.135

Wauters, L., Talley, N. J., Walker, M. M., Tack, J., & Vanuytsel, T. (2020). Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut, 69(3), 591–600. https://doi.org/10.1136/gutjnl-2019-318536

Wauters, L., Dickman, R., Drug, V., Mulak, A., Serra, J., Enck, P., Tack, J., ESNM FD Consensus Group, Accarino, A., Barbara, G., Bor, S., Coffin, B., Corsetti, M., De Schepper, H., Dumitrascu, D., Farmer, A., Gourcerol, G., Hauser, G., Hausken, T., Karamanolis, G., … Zerbib, F. (2021). United European Gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United European gastroenterology journal, 9(3), 307–331. https://doi.org/10.1002/ueg2.12061

Wei, Z., Ai, L., Chen, X., Li, L., Wang, L., & Fan, W., et al. (2019). Comparative studies on the regulatory effects of raw and charred hawthorn on functional dyspepsia and intestinal flora. Tropical Journal of Pharmaceutical Research, 18(2). https://doi:10.4314/tjpr.v18i2.16

West, C. L., Stanisz, A. M., Mao, Y. K., Champagne-Jorgensen, K., Bienenstock, J., & Kunze, W. A. (2020). Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice. PloS one, 15(1), e0225481. https://doi.org/10.1371/journal.pone.0225481

Wong, F. C., Chai, T. T., & Xiao, J. (2019). The influences of thermal processing on phytochemicals and possible routes to the discovery of new phytochemical conjugates. Critical reviews in food science and nutrition, 59(6), 947–952. https://doi.org/10.1080/10408398.2018.1479681

Xia, X., & Xiao, J. (2021). Natural Ingredients from Medicine Food Homology as Chemopreventive Reagents against Type 2 Diabetes Mellitus by Modulating Gut Microbiota Homoeostasis. Molecules (Basel, Switzerland), 26(22), 6934. https://doi.org/10.3390/molecules26226934

Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X., Xu, Z., & Chen, T. (2013). In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of agricultural and food chemistry, 61(44), 10604–10611. https://doi.org/10.1021/jf403098y

Zhi. Q. W, (2019). thesis, Study on the Processing Mechanism of Hawthorn Based on Appearance Traits-Intrinsic Composition-Pharmaceutical Effect, Master's thesis, Chengdu university of traditional Chinese medicine.

Zhu, J., Tong, H., Ye, X., Zhang, J., Huang, Y., Yang, M., Zhong, L., & Gong, Q. (2020). The Effects of Low-Dose and High-Dose Decoctions of Fructus aurantii in a Rat Model of Functional Dyspepsia. Medical science monitor: international medical journal of experimental and clinical research, 26, e919815. https://doi.org/10.12659/MSM.919815.

Downloads

Publicado

2023-04-27

Como Citar

Zhang, L., Tian, Y., Liang, Q., Wu, C., & AI, L. (2023). Investigation of the effect of hawthorn after thermal processing on functional dyspepsia based on fecal metabolomics and gut microbiota. Food Science and Technology, 43. https://doi.org/10.5327/fst.002823

Edição

Seção

Artigos Originais