Chemical composition, bioactive compounds, antioxidant activity, and inhibitor alpha-glucosidase enzyme of Sargassum sp.

Autores

  • Andarini DIHARMI Riau University, Fisheries and Marine Sciences Faculty, Department of Fishery Products Technology, Pekanbaru, Riau, Indonesia. https://orcid.org/0000-0001-5765-1400
  • EDISON EDISON Riau University, Fisheries and Marine Sciences Faculty, Department of Fishery Products Technology, Pekanbaru, Riau, Indonesia. https://orcid.org/0000-0002-9684-2784
  • Elsa A PRIDA Riau University, Fisheries and Marine Sciences Faculty, Department of Fishery Products Technology, Pekanbaru, Riau, Indonesia.
  • SUBARYONO SUBARYONO National Research and Research Agency, Research Center for Marine and Land Bioindustry, Ds. Teluk Kodek, Desa Malaka, Kec. Pemenang, Kabupaten Lombok Utara, Nusa Tenggara Barat, Indonesia. https://orcid.org/0000-0002-2613-1653
  • Taufik HIDAYAT Research Center of Agroindustry, National Research and Innovation Agency, Laptiab Building Puspiptek Serpong, Indonesia. https://orcid.org/0000-0002-5588-2499

DOI:

https://doi.org/10.5327/fst.4623

Palavras-chave:

activity, bioactive compounds, inhibitor, Sargassum sp., polarity

Resumo

Sargassum sp. has the potential to be a source of bioactive components. The purpose of this study was to determine the chemical composition, bioactive compounds, antioxidant activity, and α-glucosidase enzyme inhibitory activity of Sargassum sp. extract. The exploratory research method involved extracting Sargassum sp. for 72 h using solvents of different polarities. The chemical composition of Sargassum sp. was analyzed using parameter analysis as well as the identification of phytochemicals and total phenolics. Antioxidant activity was measured using the DPPH method as well as inhibition of α-glucosidase enzyme activity. The chemical composition of Sargassum sp. was found to be 15.67, 17.56, 13.46, 0.6, 57.82, and 13.62% moisture content, ash, protein, fat, carbohydrates (by difference), and total crude fiber, respectively. The bioactive compounds of Sargassum sp. include saponins and phenolic compounds that were extracted with methanol (617.778 GAE/100 g) and ethyl acetate (309.55 GAE/100 g). The antioxidant activity with IC50 value of Sargassum sp. extract successively extracted 648.33 mg/mL of methanol, 864.22 mg/mL of ethyl acetate, and 884 mg/mL of n-hexane. Sargassum sp. extract inhibited the activity of α-glucosidase enzyme methanol extract (9.44–0.35%), n-hexane extract (11.72–0.46%), and ethyl acetate did not. Except for the ethyl-acetate extract, Sargassum sp. extract has antioxidant and enzyme α-glucosidase inhibitor properties.

Downloads

Não há dados estatísticos.

Referências

Addina, S., Subaryono, S. & Sukarno, S. 2020. Alginate Oligosaccharide Activity as an Antioxidant and Alpha glucosidase Inhibitor. Jurnal of Pascapanen dan Bioteknologi Kelautan dan Perikanan, 15(1):47-61. https://doi.org/10.15578/jpbkp.v15i1.646

Association of Official Analytical Chemists (AOAC) (2005). Official Methods of the Analysis of the Association of Official Analytical of Chemists. Association of Analytical Chemists, Inc.

Badan Standarisasi Nasional (BSN) (2009). Spesification of Dry Seaweed. SNI 2690.1.200. Jakarta (ID). Badan Standardisasi Nasional (National Standardization Agency of Indonesia).

Bouga, M., & Combet, E. (2015). The emergence of seaweed and seaweed-containing foods in the UK: Focus on labeling, iodine content, toxicity, and nutrition. Foods, 4(2), 240-253. https://doi.org/10.3390/foods4020240

Brown, E. M., Allsopp, P. J., Magee, P. J., Gill, C. I., Nitecki, S., Strain, C. R., Mcsorley, E. M. (2014). Seaweed and human health. Nutrition Review, 73(2), 205-216. https://doi.org/10.1111/nure.12091

Cherry, P., O’Hara, C., Magee, P. J., McSorley, E. M., & Allsopp, P. J. (2019). Risks and benefits of consuming edible seaweeds. Nutrition Reviews, 77(5), 307-329. https://doi.org/10.1093/nutrit/nuy066

Cotas, J., Marques, V., Afonso, M. B., Rodrigues, C. M. P., & Pereira, L. (2020). Antitumour Potential of Gigartina pistillata Carrageenans against Colorectal Cancer Stem Cell-Enriched Tumourspheres. Mar Drugs, 18(1), 50. https://doi.org/10.3390/md18010050

Edison, E., Diharmi, A., Ariani, N. M., & Sumarto, M. I. (2020). Bioactive compounds and crude antioxidant extract of Sargassum plagyophyllum. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(1), 58-66.

El-Sheekh, M. M., El-Shenody, R. A, Basses, E. A., & El Shafay, S. M. (2021). Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, Rocky Bay of Abu Qir in Alexandria, Egypt. Food Science and Technology, 41(Suppl. 1), 29-40. https://doi.org/10.1590/fst.06120

El-Shenody, R. A., Ashour, M., & Ghobara, M. M. E. (2019). Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Brazilian Journal of Food Technology, 22, e2018203. https://doi.org/10.1590/1981-6723.20318

Farvin, K. H. S., Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from the Danish coast. Food Chemistry, 138(2-3), 1670-1680. https://doi.org/10.1016/j.foodchem.2012.10.078

Fleurence, J., Morançais, M., Dumay, J., Decottignies, P., Turpin, V., Munier, M., Garcia-Bueno, N., & Jaouen, P. (2012). What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology, 27(1), 57-61. https://doi.org/10.1016/j.tifs.2012.03.004

Ganapathi, K., Subramanian, V., & Mathan, S. (2013). Bioactive potentials of brown seaweeds, Sargassum myriocystum, S.plagiophyllum, and S. ilicifolium (Turner) J. Agardh. International Research Journal of Pharmaceutical and Applied Sciences, 3(5), 105-111.

Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Mancini, J. Fo., Torres, R. P., & Pinto, E. (2010). Lipid, fatty acid, protein, amino acid, and ash contents in four Brazilian red algae species. Food Chemistry, 120(2), 585-590. https://doi.org/10.1016/j.foodchem.2009.10.028

Harborne, J. B. (1996). Methode Phytochemical. ITB Press.

Hayati, E. K., & Halimah, N. (2010). Phytochemical test and Brine Shrimnp Lethality Test Against Artema salina Leach of Anting-Anting (Acaypha indica Linn.) Plant Extract. Journal Alchemy, 1(2), 53-103.

Hidayati, J. R., Yudiati, E., Pringgenies, D., Arifin, Z., & Oktaviyanti, D. T. (2019). Antioxidant activities, total phenolic compound, and pigment contents of tropical Sargassum sp. extract, macerated in different solvents polarity. Jurnal Kelautan Tropis, 22(1), 73-80. https://doi.org/10.14710/jkt.v22i1.4404

Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23, 543-597. https://doi.org/10.1007/s10811-010-9632-5

Ismail, G. A. (2017). Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Science and Technology, 37(2), 284-302.

Ismail, G. A., Gheda, S. F., Abo-Shady, A. M., & Abdel-Karim, O. H. (2019). In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Science and Technology, 40(3), 681-691. https://doi.org/10.1590/fst.15619

Khairy, H. M., & El-Sheikh, M. A. (2015). Antioxidant Activity and mineral composition of Three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi Journal of Biological Sciences, 22(5), 623-630. https://doi.org/10.1016/j.sjbs.2015.01.010

Khaled, N., Hiba, M., & Asma, C. (2012). Antioxidant and Antifungal activities of Padina Pavonica and Sargassum vulgare from the Lebanese Mediterranean Coast. Advances in Environmental Biology, 6(1), 42-48.

Kim, S. K., & Pangestuti, R. (2011). Biological activities and potential health benefits of fucoxanthin derived from marine brown algae (Review). Advances in Food and Nutrition Research, 64, 11-28. https://doi.org/10.1016/b978-0-12-387669-0.00009-0

Leandro, A., Pacheco, D., Cotas, J., Marques, J. C., Pereira, L., & Gonçalves, A. M. M. (2020). Seaweed’s Bioactive Candidate Compounds to Food Industry and Global Food Security. Life, 10(8), 140. https://doi.org/10.3390/life10080140

Lee, N. Y., Yunus, M. A. C., Idham, Z., Ruslan, M. S. H., Aziz, A. H. A., & Irwansyah, N. (2017). Extraction and identification of bioactive compounds from agarwood leaves. Chemical Engineering Journal, 162, 012028. https://doi.org/10.1088/1757-899X/162/1/012028

Mirghani, M. E. S., Elnour, A. A. M., Kabbashi, N. A., Alam, M. Z., Musa, K. H., & Abdullah, A. (2018). Determination of antioxidant activity of gum Arabic: An exudation from two different locations. Science Asia, 44(3), 177-186. https://doi.org/10.2306/scienceasia1513-1874.2018.44.179

Mišurcová, L., Machu, L., & Orsavová, J. (2011). Seaweed minerals as nutraceuticals. Advances in Food and Nutrition Research, 64, 371-390. https://doi.org/10.1016/B978-0-12-387669-0.00029-6

Murray, C. J. L., & Lopez, A. D. 2013. Measuring the global burden of disease. New England Journal of Medicine, 369(5), 448-457. https://doi.org/10.1056/nejmra1201534

Nagappan, H., Pee, P. P., Kee, S. H. Y., Ow, J. T., Yan, S. W., Chew, L. Y., & Kong, K. W. (2017). Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: low-density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), αamylase and α-glucosidase inhibition activities. Food Research International, 99(Part 2), 950-958. https://doi.org/10.1016/j.foodres.2017.01.023

Parthiban, C., Saranya, C., Girija, K., Hemalatha, A., Suresh, M., Anantharaman, P. (2013). Evaluation of in vitro antioxidant properties of some selected seaweeds from Tuticorin coast. International Journal of Current Microbiology and Applied Sciences, 2(9), 64-73.

Pereira, L. (Ed.) (2016). Edible Seaweeds of the World. CRC Press.

Pereira, L. 2018. Congenital Viral Infection: Traversing the Uterine-Placental Interface. Annual Review of Virology, 5(1), 273-299. https://doi.org/10.1146/annurev-virology-092917-043236

Pereira, N. L., Grogan, M., & William Dec, G. 2018. Spectrum of Restrictive and Infiltrative Cardiomyopathies: Part 1 of a 2-Part Series. J Am Coll Cardio, 71(10), 1130-1148. https://doi.org/10.1016/j.jacc.2018.01.016

Purwatresna, E. (2012). Antidiabetic Activity of Water Extract and Ethanol of Soursop Leaves In Vitro Through A-Glucosidase Enzyme Inhibition. Thesis, Institut Pertanian Bogor, Bogor.

Rajapakse, N., & Kim, S.-K. (2011). Nutritional and digestive health benefits of seaweed. In S.-K. Kim (Ed.), Advances in Food and Nutrition Research (pp. 17-28). Academic Press.

Rebours, C., Marinho-Soriano, E., Zertuche-González, J. A., Hayashi, L., Vásquez, J. A., Kradolfer, P., Soriano, G., Ugarte, R., Abreu, M. H., & Bay-Larsen, I. (2014). Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology, 26(5), 1939-1951. https://doi.org/10.1007/s10811-014-0304-8

Sancheti, S., Sancheti, S., & Seo, S. Y. (2009). Chaenomeles sinensis: A potent α-and β-glucosidase inhibitor. American Journal of Pharmacology and Toxicology, 4(1), 8-11. https://doi.org/10.3844/ajptsp.2009.8.11

Sathya, R., Kanaga, N., Sankar, P., & Jeeva, S. (2017). Antioxidant Properties of Phlorotanninsfrom Brown Seaweed Cystoseira trinodis (Forsskal) C. Agardh. Arabian Journal of Chemistry, 10(Suppl. 2), S2608-S2614. https://doi.org/10.1016/j.arabjc.2013.09.039

Septiana, A. T., & Asnani, A. (2012). Study of the Physicochemical Properties of Brown Seaweed Extract Sargassum duplicatum Using Various Solvents and Extraction Methods. Jurnal Agrointek, 6(1), 22-28.

Shannon, E., & Abu-Ghannam, N. (2019). Seaweeds as nutraceuticals for health and nutrition. Phycologia, 58(5), 563-577. https://doi.org/10.1080/00318884.2019.1640533

Tanniou, J., Tweel, I. V., Teerenstra, S., & Roes, K. C. (2014). Level of evidence for promising subgroup findings in an overall non-significant trial. Statistical Methods in Medical Research, 25(5), 2193-2213. https://doi.org/10.1177/0962280213519705

Toga, M., Miller, E. E., & Prat, D. E. (1984). Chia seeds as a source of natural lipids antioxidants. Journal of the American Oil Chemists’ Society, 61, 928-993. https://doi.org/10.1007/BF02542169

Westrate, J. A., Poppel, G. V., & Verschuren, P. M. (2002). Functional food, Trends and Future. British Journal of Nutrition, 88(Suppl. 2), S233-S235. https://doi.org/10.1079/BJN2002688

Yudiati, E., Pringgenies, D., Djunaedi, A., Arifin, Z. & Sudaryono, A. 2018a. Free Radical Scavenging of Low Molecular Weight Sodium Alginate (LMWSA) from Sargassum polycystum Produced by Thermal Treatment. Aquacultura Indonesia, 19(1), 21-27. https://doi.org/10.21534/ai.v19i1.121

Yudiati, E., Santosa, G. W., Tontowi, M. R., Sedjati, S., Supriyantini, E., & Khakimah, M. (2018b). Optimization of alginate alkaline extraction technology from Sargassum polycystum and its antioxidant properties. IOP Conference Series: Earth and Environmental Science, 139, 012052. https://doi.org/10.1088/1755-1315/139/1/012052

Zhang, X. F., Thuong, P. T., Min, B. S., Ngoc, T. M., Hung, T. M., Lee, I. S., Na, M. K., Seong, Y. H., Song, K. S., & Bae, K. H. (2006). Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana. Journal of Natural Products, 69(9), 1370-1373. https://doi.org/10.1021/np060237u

Downloads

Publicado

2023-10-17

Como Citar

DIHARMI, A., EDISON, E., PRIDA, E. A., SUBARYONO, S., & HIDAYAT, T. (2023). Chemical composition, bioactive compounds, antioxidant activity, and inhibitor alpha-glucosidase enzyme of Sargassum sp. Food Science and Technology, 43. https://doi.org/10.5327/fst.4623

Edição

Seção

Artigos Originais