Study of the drying kinetics of black mulberry (Morus nigra L.) leaves

Autores

DOI:

https://doi.org/10.5327/fst.00189%20

Palavras-chave:

mathematical modeling, convective drying, Morus nigra L.

Resumo

Black mulberry leaves have been used to promote health and prevent diseases due to their biological properties. Drying leaves allows greater stability during storage and marketing. However, studying this operation is important to ensure that the properties are maintained. Therefore, the objective of this study was to use mathematical modeling to define the model that best fits to the experimental data of the drying kinetics at temperatures of 40, 50, 60, and 70°C. Liquid diffusion, leaf surface area, the relationship between temperature increase and diffusion coefficient, and energy activation were also determined. Among the mathematical models studied, the Page model was the one that best described the drying process of black mulberry leaves. As for the diffusion coefficient, the values increase as the drying temperature increases. The activation energy was 65.418 kJ mol-1, and it was observed that the lower the activation energy, the greater the water diffusivity in the product. The drying kinetics data of black mulberry leaves allowed a better understanding of this operation in a matrix with wide application potential. Drying black mulberry leaves at different temperatures altered their color. Considering the evaluations, temperatures of 40 and 50°C are the most indicated for drying black mulberry leaves.

Downloads

Não há dados estatísticos.

Referências

Afonso Júnior, P. C., & Corrêa, P. C. (2003). Influência do tempo de armazenagem na cor dos grãos de café pré-processados por “via seca” e “via úmida”. Ciência e Agrotecnologia, 27(6), 1268-1276. https://doi.org/10.1590/S1413-70542003000600010

Alwi, H., Zubairy, N., & Hamid, K. H. (2022). Drying properties of agarwood leaves in vacuum far infrared dryer: Colour changes. Materials Today: Proceedings, 63(Suppl. 1), S174-S177. https://doi.org/10.1016/j.matpr.2022.02.130

Arslan, D., & Ozcan, M. M. (2008). Evaluation of drying methods concerning drying kinetics, mineral content, and colour characteristics of rosemary leaves. Energy Conversion and Management, 49(5), 1258-1264. https://doi.org/10.1016/j.enconman.2007.08.005

Arslan, D., & Ozcan, M. M. (2012). Evaluation of drying methods with respect to drying kinetics, mineral content, and color characteristics of savory leaves. Food and Bioprocess Technology, 5, 983-991. https://doi.org/10.1007/s11947-010-0498-y

Azmir, J., Hou, Q., & Aibing, Y. (2019). CFD-DEM simulation of drying of food grains with particle shrinkage. Powder Technology, 343(1), 792-802. https://doi.org/10.1016/j.powtec.2018.11.097

Bušić, A., Vojvodić, A., Komes, D., Akkermans, C., Belščak-Cvitanovi, A., Stolk, M., & Hofland, G. (2014). Comparative evaluation of CO2 drying as an alternative drying technique of basil (Ocimum basilicum L.): The effect on bioactive and sensory properties. Food Research International, 64, 34-42. https://doi.org/10.1016/j.foodres.2014.06.013

Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods, 9(9), 1261. https://doi.org/10.3390/foods9091261

Cruz, G. L. (1979). Dicionário de plantas úteis no Brasil. Civilização Brasileira.

Dalmagro, A. P., Camargo, A., da Silva Filho, H., Valcanaia, M. M., de Jesus, P. C., & Zeni, A. L. B. (2018). Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Industrial Crops and Products, 123, 323-330. https://doi.org/10.1016/j.indcrop.2018.06.085

Deutsche Institut für Normung (DIN) (1979). DIN 6174. Farbmetrische Bestimmung Von Farbabständen bei Körperfarben nach der CIELAB. DIN.

Doymaz, I., Tugrul, N., & Palam. (2006). Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77(3), 559-565. https://doi.org/10.1016/j.jfoodeng.2005.06.070

Evin, D. (2012). Thin layer drying of Gundelia tournefortii L. Food and Bioproducts Processing, 90(2), 323-332. https://doi.org/10.1016/j.fbp.2011.07.002

Fan, L., Peng, Y., Wu, D., Hu, J., Shi, X. Yang, G., & Li, X. (2020). Dietary supplementation of Morus nigra L. leaves decrease fat mass partially through elevating leptin-stimulated lipolysis in pig model. Journal of Ethnopharmacology, 249, 112416. https://doi.org/10.1016/j.jep.2019.112416

Ferreira Junior, W. N., Resende, O., Oliveira, D. E. C., & Costa, L. M. (2018). Isotherms and isosteric heat desorption of Hymenaea stigonocarpa Mart. seeds. Journal of Agricultural Science, 10(10), 504-512. https://doi.org/10.5539/jas.v10n10p504

Franzotti, E. M., Melo, S. R. O., Neves, F. A. R., Silveira, D., & Simeoni, L. A. (2004). Ação de extratos de Morus nigra em receptores de estrogênio. XVIII Simpósio de Plantas Medicinais do Brasil.

Gasparin, P. P., Alves, N. C. C., Christ, D., & Coelho, S. R. M. (2014). Qualidade de folhas e rendimento de óleo essencial em hortelã pimenta (Mentha x Piperita L.) submetida ao processo de secagem em secador de leito fixo. Revista Brasileira de Plantas Medicinais, 16(2 Suppl. 1), 337-344. https://doi.org/10.1590/1983-084X/12_003

Gomes, F. P., Resende, O., Sousa, E. P., Oliveira, D. E. C., & Araújo Neto, F. R. (2018). Drying kinetics of crushed mass of ‘jambu’: effective diffusivity and activation energy. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(7), 499-505. https://doi.org/10.1590/1807-1929/agriambi.v22n7p499-505

Goneli, A. L. D., Correa, P. C., Resende. O., & Reis Neto, S. A. (2007). Estudo da difusão de umidade em grãos de trigo durante a secagem. Ciência e Tecnologia de Alimentos, 27(1), 135-140. https://doi.org/10.1590/S0101-20612007000100024

Hago, S., Mahrous, E. A., Moawad, M., Abdel-Wahab, A., & Abdel-Sattar, E. (2021). Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Natural Product Research, 35(5), 829-835. https://doi.org/10.1080/14786419.2019.1601094

Hariadi, H., Karim, M. A., Hanifah, U., Haryanto, A., Novrinaldi, Surahman, D. N., Mulyanto Astro, H., Assalam, S., & Finni Lathifah Lubis, R. (2023). Effect of butterfly-pea powder (Clitoria ternatea L.) and drying temperature towards physicochemical characteristics of butterfly-pea milk powder with vacuum drying method. Food Science and Technology, 43, e109622. https://doi.org/10.1590/fst.109622

Jiang, N., Ma, J., Ma, R., Zhang, Y., Chen, P., Ren, M., & Wang, C. (2023). Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology, 43, e109622. https://doi.org/10.1590/fst.100422

Jideani, V. A., & Mpotokwana, S. M. (2009). Modeling of water absorption of botswana bambara varieties using Peleg’s equation. Journal of Food Engineering, 92(2), 182-188. https://doi.org/10.1016/j.jfoodeng.2008.10.040

Jorge, A. P. P., Ferreira Junior, W. N., Moura, L. C., Oliveira, D. E. C., & Resende, O. (2021). Drying kinetics of gueroba (Syagrus oleracea) fruit pulp. Revista Brasileira de Engenharia Agricola e Ambiental, 25(1), 23-29. https://doi.org/10.1590/1807-1929/agriambi.v25n1p23-29

Kashaninejad, M., Mortazavi, A., Safekordi, A., & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. https://doi.org/10.1016/j.jfoodeng.2005.09.007

Lima-Corrêa, R. A. B., Andrade, M. S., da Silva, M. F. G. F., Freire, J. T., & Ferreira, M. C. (2017). Thin-layer and vibrofluidized drying of basil leaves (Ocimum basilicum L.): analysis of drying homogeneity and influence of drying conditions on the composition of essential oil and leaf colour. Journal of Applied Research on Medicinal and Aromatic Plants, 7, 54-63. https://doi.org/10.1016/j.jarmap.2017.05.001

Llavata, B., García-Pérez, J. V., Simal, S., & Cárcel, J. A. (2020). Innovative pre-treatments to enhance food drying: a current review. Current Opinion in Food Science, 35, 20-26. https://doi.org/10.1016/j.cofs.2019.12.001

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). Enthalpy–entropy compensation models for sorption and browning of garlic. Journal of Food Engineering, 28(2), 109-119. https://doi.org/10.1016/0260-8774(94)00072-7

Malaquinas, J. D., & Costa, F. R. (2006). Amoreira-preta e seus benefícios como planta fitoterápica. 4º Encontro de Ciências Biológicas.

Martinazzo, A. P., Corrêa, P. C., Resende, O., & Melo, E. C. (2007). Análise e descrição matemática da cinética de secagem de folhas de capim-limão. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(3), 301-306. https://doi.org/10.1590/S1415-43662007000300009

McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254

Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. https://doi.org/10.1016/j.jfoodeng.2004.04.023

Pantoja Espinosa, D. C., Rodríguez Cortina, J., Hernández Carrión, M., & Osorio Mora, O. (2022). Drying and cooking effects on the final quality of pea grains (Pisum sativum L.) varieties. Food Science and Technology, 42, e32120. https://doi.org/10.1590/fst.32120

Prates, M. F. O., Reis, R. C., Devilla, I. A., Faria, R. Q., & Lima Junior, A. F. (2012). Cinética de secagem de folhas de Solanum lycocarpum A. St.-Hil. (fruta-de-lobo). Revista Brasileira de Plantas Medicinais, 14(3), 514-521. https://doi.org/10.1590/S1516-05722012000300014

Quequeto, W. D., Resende, O., Silva, P. C., Santos, F. A., & Silva, L. C. M. (2019). Drying Kinetics of Noni Seeds. Journal of Agricultural Science, 11(5), 250-258. https://doi.org/10.5539/jas.v11n5p250

Radünz, L. L., Amaral, A. S., Mossi, A. J., Melo, E. C., & Rocha, R. P. (2011). Avaliação da cinética de secagem de carqueja. Engenharia na Agricultura, 19(1), 19-27. https://doi.org/10.13083/reveng.v19i1.147

Rahimmalek, M., & Goli, S. A. (2013). Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymus daenensis subsp. daenensis. Celak leaves. Industrial Crops and Products, 42, 613-619. https://doi.org/10.1016/j.indcrop.2012.06.012

Reis, R. C., Devilla, I. A., Ascheri, D. P. R., Servulo, A. C. O., & Souza, A. B. M. (2012). Cinética de secagem de folhas de manjericão (Ocimus basilicum L.) via infravermelho. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(12), 1346-1352. https://doi.org/10.1590/S1415-43662012001200012

Resende, O., Corrêa, P. C., Jarén, C., & Moure, A. J. (2007). Bean moisture diffusivity and drying kinetics: a comparison of the liquid diffusion model when taking into account and neglecting grain shrinkage. Spanish Journal of Agricultural Research, 5(1), 51-58. https://doi.org/10.5424/sjar/2007051-222

Resende, O., Oliveira, D. E. C., Costa, L. M., & Ferreira Junior, W. N. (2018). Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 38(1), 103-109. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p103-109/2018

Resende, O., Rodrigues, S., Siqueira, V. C., & Arcanjo, R. V. (2010). Cinética da secagem de clones de café (Coffea canephora Pierre) em terreiro de chão batido. Acta Amazônica, 40(2), 247-256. https://doi.org/10.1590/S0044-59672010000200002

Rizvi, S. S. H. (1995). Thermodynamic properties of foods in dehydration. In: M. A. Rao & S. S. H. Rizvi (Eds.), Engineering properties of foods (p. 223-309). Academic Press.

Rocha, R. P., Melo, E. C., Corbín, J. B., Berbet, P. A., Donzeles, S. M. L., & Tabar, J. A. (2012). Cinética del secado de tomillo. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(6), 675-683. https://doi.org/10.1590/S1415-43662012000600013

Sánchez-Salcedo, E. M., Tassotti, M., Del Rio, D., Hernández, F., Martínez, J. J., & Mena, P. (2016). (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food Chemistry, 212, 250-255. https://doi.org/10.1016/j.foodchem.2016.05.121

Tutin, G. T., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore D. M., Valentine, D. H., Walters, S. M., & Webb, D. A. (1996). Morus L. In: Flora Europa. Psilotaceae to Platanaceae (v. 1). Cambridge University Press.

Wolfinger, R. D. (1993). Covariance structure selection in general mixed models. Communications in Statistics, 22(4), 1079-1106. https://doi.org/10.1080/03610919308813143

Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. https://doi.org/10.1080/07373939608917205

Downloads

Publicado

2024-04-08

Como Citar

PINHEIRO, G. K. I., OLIVEIRA, D. E. C. de, RESENDE, O., ROMANI, V. P., & GOMES, F. P. (2024). Study of the drying kinetics of black mulberry (Morus nigra L.) leaves. Food Science and Technology, 44. https://doi.org/10.5327/fst.00189

Edição

Seção

Artigos Originais