Factors influencing kombucha production: effects of tea composition, sugar, and SCOBY

Autores

DOI:

https://doi.org/10.5327/fst.8123

Palavras-chave:

green tea, black tea, factorial design, non-alcoholic beverage

Resumo

Kombucha is a functional beverage that lacks studies toward standardization of process parameters; thus, the present work aims to evaluate the effect of sucrose content, initial SCOBY mass, and tea composition on several characteristics of the final beverage. For this purpose, a factorial design was performed, and the effect of the three variables was statistically evaluated. All kombuchas were within Brazilian regulation standards (higher than 2.5 and lower than 130 mgEq/L) and can be classified as non-alcoholic beverages. Kombucha yield ranged from 87.3% to 96.4%; SCOBY growth, from 41.11 to 62.08%; turbidity, from 108 to 421.5 NTU; acetic acid, from 3.78 to 5.33 mg/mL; glycerol, from 0.25 to 0.52 mg/mL; and ethanol content, from 1.90 to 3.21 mg/mL. Results showed that kombucha yield, pH, and SCOBY growth were significantly influenced by the SCOBY mass; acidity was greatly affected by the tea composition; kombucha’s turbidity was significantly affected by the sucrose content and the interaction of the sugar content and tea composition; and glycerol, alcohol, and acetic acid were not affected by the parameters evaluated. Results bring science-based information about this global trending beverage, seeking high quality and standardization.

Downloads

Não há dados estatísticos.

Referências

Allied Market Research (2022). Functional beverages market. Retrieved from https://www.alliedmarketresearch.com/functional-beverages-market-A13087

Amarasinghe, H., Weerakkody, N. S., & Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition, 6(3), 659-665. https://doi.org/10.1002/fsn3.605

Bortolini, D. G., Maciel, G. M., Fernandes, I. A. A., Rosseto, R., Brugnari, R., Ribeiro, V. R., & Haminiuk, C. W. I. (2022). Biological potential and technological applications of red fruits: An overview. Food Chemistry, Advances, 1, 100014. https://doi.org/10.1016/j.focha.2022.100014

Bortolomedi, B. M., Pagliarini, C. S., & Brod, F. C. A. (2022). Bioative compounds in kombucha: a review on substrate effect and fermentation conditions. Food Chemistry, 385, 132719. https://doi.org/10.1016/j.foodchem.2022.132719

Brazil (2019). Ministry of Agriculture, Livestock and Supply. Normative Instruction No. 41, from September 17th of 2019. Retrieved from https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-41-de-17-de-setembro-de-2019-216803534

Calado, V., & Montgomery, D. C. (2003). Planejamento de Experimentos usando Statistica. Epapers.

Cardoso, R. R., Oliveira Neto, R., Thomaz dos Santos D’Almeida, C., Pimenta do Nascimento, T., Girotto Pressete, C., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/j.foodres.2019.108782

Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G., & Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5), fix048. https://doi.org/10.1093/femsec/fix048

Değirmencioğlu, N., Yıldız, E., Sahan, Y., Güldas, M., & Gürbüz, O. (2020). Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. Journal of Food Science and Technology, 58(6), 2304-2312. https://doi.org/10.1007/s13197-020-04741-7

Girelli, A., Sant’Anna, V., & Klein, M. P. (2023). Drying of butiá pulp by the foam layer method and powder characterization. Pesquisa Agropecuária Brasileira, 58, e03050. https://doi.org/10.1590/S1678-3921.pab2023.v58.03050

Goh, W. N., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., & Bhat, R. (2012). Fermentation of black tea broth (kombucha): I. effect of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, 19(1), 109-117. Retrieved from: http://www.ifrj.upm.edu.my/19%20(01)%202011/(15)IFRJ-2011-105%20Rajeev.pdf

Ivanišová, E., Meňhartová, K., Terentjeva, M., Harangozo, Ľ., Kántor, A., & Kačániová, M. (2019). The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. Journal of Food Science and Technology, 57(5), 1840-1846. https://doi.org/10.1007/s13197-019-04217-3

Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K. (2020). Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5), 447. https://doi.org/10.3390%2Fantiox9050447

Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538-550. https://doi.org/10.1111/1541-4337.12073

Kotta, S., Mubarak Aldawsari, H., Badr-Eldin, S. M., Alhakamy, N. A., & Md, S. (2021). Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chemistry, 357, 129721. https://doi.org/10.1016/j.foodchem.2021.129721

Lobo, R. O., Dias, F. O., & Shenoy, C. K. (2017). Kombucha for healthy living: evaluation of antioxidant potential and bioactive compounds. International Food Research Journal, 24(2), 541-546. Retrieved from: http://www.ifrj.upm.edu.my/24%20(02)%202017/(10).pdf

Miranda, J. F., Ruiz, L. F., Silva, C. B., Uekane, T. M., Silva, K. A., González, A. G. M., Fernandes, F. D., & Lima, A. R. (2022). Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science, 87(2), 503-527. https://doi.org/10.1111/1750-3841.16029

Mir, M. B., Rastogi, S., & Haripriva, S. (2021). Optimization of process variables for the preparation of almond gum incorporated set-yogurt using Box-Behnken response surface model. Applied Food Research, 1(2), e100016. https://doi.org/10.1016/j.afres.2021.100016

Neffe-Skocińska, K., Sionek, B., Ścibisz, I., & Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA Journal of Food, 15(4), 601-607. https://doi.org/10.1080/19476337.2017.1321588

Polat, H., Capar, T. D., Inanir, C., Ekici, L., & Yalcin, H. (2020). Formulation of functional crackers enriched with germinated lentil extract: A Response Surface Methodology Box-Behnken Design. LWT, 123, 109065. https://doi.org/10.1016/j.lwt.2020.109065

Spedding, G. (2015). So what is kombucha? An alcoholic or a non-alcoholic beverage? A brief selected literature review and personal reflection. BDAS, LLC. Retrieved from https://research.kombuchabrewers.org/wp-content/uploads/kk-research-files/so-what-is-kombucha-an-alcoholic-or-a-non-alcoholic-beverage-a-brief-selectedliterature-review-and-p.pdf

Valiyan, F., Koohsari, H., & Fadavi, A. (2021). Use of response surface methodology to investigate the effect of several fermentation conditions on the antibacterial activity of several kombucha beverages. Journal of Food Science and Technology, 58, 1877-1891. https://doi.org/10.1007/s13197-020-04699-6

Vargas, B. K., Fabricio, M. F., & Záchia Ayub, M. A. (2021). Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Bioscience, 44(Part A), e101332. https://doi.org/10.1016/j.fbio.2021.101332

Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J.-P., Renard, T., Rollan, S., & Taillandier, P. (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry, 83, 44-54. https://doi.org/10.1016/j.procbio.2019.05.004

Yeddes, W., Djebali, K., Wannes, W. A., Horchani-Naifer, K., Hammami, M., Younes, I., & Tounsi, M. S. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface methodology. International Journal of Biological Macromolecules, 154, 92-103. https://doi.org/10.1016/j.ijbiomac.2020.03.092

Zhao, X., Procopio, S., & Becker, T. (2015). Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. Journal of Food Science and Technology, 52(12), 7588-7598. https://doi.org/10.1007/s13197-015-1977-y

Zofia, N. L., Aleksandra, Z., Tomasz, B., Martyna, Z. D., Magdalena, Z., Zofia, H. B., & Tomasz, W. (2020). Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules, 25(22), 5394. https://doi.org/10.3390/molecules25225394

Downloads

Publicado

2023-10-05

Como Citar

DARTORA, B., SANT’ANNA, V., HICKERT, L. R., FENSTERSEIFER, M., AYUB, M. A. Z., FLÔRES, S. H., & PEREZ, K. J. (2023). Factors influencing kombucha production: effects of tea composition, sugar, and SCOBY. Food Science and Technology, 43. https://doi.org/10.5327/fst.8123

Edição

Seção

Artigos Originais