The correlation between the antioxidant and anti-aging activities of Hydrangea serrata Seringe extract

Autores

DOI:

https://doi.org/10.5327/fst.00017

Palavras-chave:

Hydrangea serrata seringe, antioxidant, anti-aging, correlation

Resumo

In this study, the correlation between antioxidant and anti-aging activities of Hydrangea serrata Seringe extract was confirmed. Total polyphenol and total flavonoid content were determined to be highest in 60% ethanol extract (11.45±0.13 mg GAE/g) and 40% ethanol extract (19.27±0.09 mg CE/g), respectively. In the reducing power experiment for transition metal ions, the 40% ethanol extract (285.96±0.99 mM TE/g, 5.21±0.99 mM TE/g) was the best for both. In the DPPH and ABTS radical scavenging activity, 80% ethanol extract (5.35±0.00 mM TE/g) and 40% ethanol extract (969.14±0.00 uM TE/g) were the best, respectively. In the ORAC assay, 60% ethanol extract showed the highest antioxidant activity (2.62±1.22 mM TE/g). The RC50 values of the HR and HP experiments showed excellent activity in 20% ethanol extract (631.96±0.6 μg/mL) and 40% ethanol extract (115.62±0.9 μg/mL), respectively, and for active nitrogen evaluation of species elimination efficacy, the 40% ethanol extract (41.03±3.7 μg/mL, 373.10±5.1 μg/mL) displayed strong (ONOO-) scavenging activity. In addition, 40% ethanol extract showed the highest anti-aging activity in the range of 16.40–42.54%. The correlation between reactive oxygen species (HR, HP) scavenging activity, active nitrogen species (NO, ONOO-) scavenging activity, and anti-aging effect (collagenase inhibition) showed significantly high values. It was confirmed that the active nitrogen species scavenging rate has a high correlation with the anti-aging effect.

Downloads

Não há dados estatísticos.

Referências

Dalton, D. A., Langeberg, L., & Trenemen, N. C. (1993). Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiologia Plantarum, 87(3), 365-370. https://doi.org/10.1111/j.1399-3054.1993.tb01743.x

David, A. W., & Ljubuncic, P. (2001). Oxidative stress and vascu-lar smooth muscle cell function in liver disease. Pharmacology & Therapeutics, 89, 295-308.

Dean, R. T., Gieseg, S. & Davies, M. J. (1993). Reactive species and their accumulation on radical damaged proteins. Trends in Biochemical Sciences, 18(11), 437-441.https://doi.org/10.1016/0968-0004(93)90145-D

Droge, W. (2001). Free radicals in the physiological control of cell function. Physiology Review, 82(1), 47-95. https://doi.org/10.1152/physrev.00018.2001

Folin, O., & Denis, W. (1912). On phosphotungasticphosphomolybdic compounds as color reagents. Journal of Biological Chemistry, 12(2), 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5

Gu, Y. R., Kim, J. H., & Hong, J. H. (2018). The anti-oxidant, whitening and anti-wrinkle effects of Castanea crenata inner shellextracts processed by enzyme treatment and pressurizedextraction. Korean Journal of Food Preservation, 25(1), 79-89. https://doi.org/10.11002/kjfp.2018.25.1.79

Halliwell, B., Aeschbach, R., Loliger, J., & Aruoma, O. I. (1995). The characterization of antioxidants. Food Chemistry and Toxicology, 33(7), 601-617. https://doi.org/10.1016/0278-6915(95)00024-v

Halliwell, B., & Gutteridge, J. (1985). Free radicals in biology and medicine. Clarendon Press.

Hernandez-Rodriguez, P., Baquero, L. P., & Larrota, H. R. (2019). Flavonoids: Potential therapeutic agents by their antioxidant capacity. In P. Hernandez-Rodriguez, L. P. Baquero, H. R. Larrota (eds.). Bioactive Compounds (p. 265-288). Woodhead.

Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H., & Itakura, Y. (1994). Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Medica, 60(5), 417-420. https://doi.org/10.1055/s-2006-959522

Jeon, Y. H., Kim, M. H., & Kim, M. R. (2008). Antioxidative and antimutagenic activity of ethanol extractsfrom Cuscutae semen. Korean Journal of Food and Cookery Science, 24(1), 46-51.

Kang, H., Lee, S. K., Song, K. J., & Jung, M. S. (2010). Antioxidant and anti-aging activities of ethanol extracts from defattedPerilla frutescens. Journal of Naturopathy, 7, 70-74.

Kim, E. Y., Baik, I. H., Kim, J. H., Kim, S. R., & Rhyu, M. R. (2004). Screening of the antioxidant activity of some medicinal plants. Korean Journal of Food Science and Technology, 36(2), 333-338.

Kim, K. N., Heo, S. J., Cha, S. H., & Jeon, Y. J. (2006). Evaluation of DPPH Radical Scavenging Activity of Jeju Seaweeds Using High Throughput Screening (HTS) Technique. Journal of Marine Bioscience and Biotechnology, 170-177.

Kim, T. H., Kim, J. M., Baek, J. M., Kim, T. W., Kim, D. J., Park, J. H., & Choe, M. (2011). Antioxidant and whitening effects of Agrimonia pilosa Ledeb water extract. Korean Journal of Medicinal Crop Science, 19(3), 177-184.

Ko, S. C., Kang, S. M., Ahn, G. N., Yang, H. P., Kim, K. N., & Jeon, Y. J. (2010). Antioxidant Activity of Enzymatic Extracts from Sargassum coreanum. Journal of the Korean Society Food Science and Nutrition, 39(4), 494-499. https://doi.org/10.3746/jkfn.2010.39.4.494

Kooy, N. W., Royall, J. A., Ischiropoulos, H., & Beckman, J. S. (1994). Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radical Biology and Medicine, 16(2), 149-156. https://doi.org/10.1016/0891-5849(94)90138-4

Lewoyehu, M., & Amare, M. (2019). Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review. Cogent Food & Agriculture, 5(1), 1685059. https://doi.org/10.1080/23311932.2019.1685059

Lin, K. T., Xue, J. Y., Sun, F. F., & Wong, P. Y. (1997). Reactive oxygen species participate in peroxynitrite-induced apoptosis in HL-60 cells. Biochemical and Biophysical Research Communications, 230(1), 115-119. https://doi.org/10.1006/bbrc.1996.5897

Min, L. K., Taek, J. G., & Hee, P. D. (2004). Study of antimicrobial and DPPH radical scavenger activity of wood vinegar. Korean Society for Biotechnology and Bioengineering Journal, 19(5), 381-384.

Muller, H. E. (1985). Detection of hydrogen peroxide produced by microorganism on ABTS peroxidase medium. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene, 259(2), 151-158. https://doi.org/10.1016/s0176-6724(85)80045-6

Nagata, N., Momose, K., & Ishida, Y. (1999). Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. Journal of Biochemistry, 125(4), 658-661. https://doi.org/10.1093/oxfordjournals.jbchem.a022333

Namiki, M. (1990). Antioxidants/antimutagens in food. Department of Brewing and Fermentation. Critical Review of Food Science and Nutrition, 29(4), 273-300. https://doi.org/10.1080/10408399009527528

Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agriculture and Food Chemistry, 49(10), 4619-4926. https://doi.org/10.1021/jf010586o

Park, G. H., Lee, S. H., Kim, H. Y., Jeong, H. S., Kim, E. Y., Yun, Y. W., Nam, S. Y., & Lee, B. J. (2011). Comparison in antioxidant effects of four citrus fruits. Journal of Food Hygiene and Safety, 26(4), 355-360.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019

Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agriculture and Food Chemistry, 48(8), 3396-3402. https://doi.org/10.1021/jf9913458

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radicals and Biology and Medicine, 20(7), 933-956. https://doi.org/10.1016/0891-5849(95)02227-9

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2

Ryu, C. K., & Hwang, M. K. (1990). Immune Suppression and Stimulation of Antioxidants 2 - Effect of Propyl gallate on Murine Cell Mediated Immune Functions. Korean Journal of Food Hygiene, 5(1-2), 41-48.

Seo, E. J., Hong, E. S., Choi, M. H., Kim, K. S., & Lee, S. J. (2010). Antioxidant and skin whitening effects of Rhamnus yoshinoi extracts. Korean Journal of Food Science and Technology, 42(6), 750-754.

Shi, J., Gong, J., Liu, J., Wu, X., & Zhang, Y. (2009). Antioxidant capacity of extract from edible flowers of P runus mume in China and its active components. LWT-Food Science and Technology, 42(2), 477-482. https://doi.org/10.1016/j.lwt.2008.09.008

Virag, L., Szabo, E., & Szabo, P. C. (2003). Peroxynitrite induced cytotoxicity: mechanism and opportunities for intervention. Toxicology Letters, 140-141, 113-124. https://doi.org/10.1016/s0378-4274(02)00508-8

Wang, M. F., Shao, Y., Li, J. G., Zhu, N. Q., & Ho, C. T. (1998). Antioxidantive phenolic compounds from sage(Salvia officinalis). Journal of Agriculture and Food Chemistry, 46(12), 4869-4873. https://doi.org/10.1021/jf980614b

Wunsch, E., & Heidrich, H. (1963). Zur quantitativen Bestimmung der Kollagenase. Biological Chemistry, 333(1), 149-151. https://doi.org/10.1515/bchm2.1963.333.1.149

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and they scavenging effects on super-oxide radicals. Food Chemistry, 64(5), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Downloads

Publicado

2023-11-15

Como Citar

Kim, S.-H., Sun, S.-O., & Yim, S.-H. (2023). The correlation between the antioxidant and anti-aging activities of Hydrangea serrata Seringe extract. Food Science and Technology, 43. https://doi.org/10.5327/fst.00017

Edição

Seção

Artigos Originais