Impact of galacto-oligosaccharides on prebiotic potential in the intestinal microbiota fermentation and health status in an animal model

Autores

DOI:

https://doi.org/10.5327/fst.88922

Palavras-chave:

galacto-oligosaccharides, in vitro fermentation, short-chain fatty acid, high-fat diet, body weight

Resumo

The present study was conducted to assess selected galacto-oligosaccharides (GOS) effects on short-chain acids (SCFA), microbiota variability in in vitro, and health benefits using an animal model. In the in-vitro anaerobic batch, fermentation was applied to different groups divided by a varied amount of GOS sources, mixtures, and prebiotics. Results reported that SCFA for inulin contributed significantly higher for acetic, propionic, and butyric acids, and resistant starch (RS) showed a non-significant effect for acetic and propionic acids whereas the combined effect of GOS and RS showed higher values for parameters. For bacterial enumeration of bifidobacteria compared to individual GOS, synergistic effects were documented. The Sprague-Dawley rats given GOS under western diet influence relative to a high-fat diet alone observed after 1 and 4 weeks documented significant levels for acetic and butyric acid production, whereas body and organ weights for cecum tend to increase after 4 weeks of dietary intervention (p<0.05). Microbiome data using gene sequencing revealed a higher proportion of firmicutes and lower Bacteroides in control rats, which means Lachnospiraceae family abundances were higher in HF+GOS group. Overall, GOS fermentation showed an increment in the bifidobacterial population and tend to raise levels of SCFA in rats fed on a high-fat diet alone, whereas non-significant variation was reported in microbiome diversity after intervention.

The present study was conducted to assess selected galacto-oligosaccharides (GOS) effects on short-chain acids (SCFA), microbiota variability in in vitro, and health benefits using an animal model. In the in-vitro anaerobic batch, fermentation was applied to different groups divided by a varied amount of GOS sources, mixtures, and prebiotics. Results reported that SCFA for inulin contributed significantly higher for acetic, propionic, and butyric acids, and resistant starch (RS) showed a non-significant effect for acetic and propionic acids whereas the combined effect of GOS and RS showed higher values for parameters. For bacterial enumeration of bifidobacteria compared to individual GOS, synergistic effects were documented. The Sprague-Dawley rats given GOS under western diet influence relative to a high-fat diet alone observed after 1 and 4 weeks documented significant levels for acetic and butyric acid production, whereas body and organ weights for cecum tend to increase after 4 weeks of dietary intervention (p<0.05). Microbiome data using gene sequencing revealed a higher proportion of firmicutes and lower Bacteroides in control rats, which means Lachnospiraceae family abundances were higher in HF+GOS group. Overall, GOS fermentation showed an increment in the bifidobacterial population and tend to raise levels of SCFA in rats fed on a high-fat diet alone, whereas non-significant variation was reported in microbiome diversity after intervention.

Downloads

Não há dados estatísticos.

Referências

Baghel, V. S, Gopal, K. Dwivedi, S., & Tripathi, R. D. (2005). Bacterial indicators of faecal contamination of the Gangetic river system right at its source. Ecological Indicators, 5(1), 49-56. https://doi.org/10.1016/j.ecolind.2004.09.002

Barry, K. A., Wojcicki, B. J., Middelbos, I. S., Vester, B. M., Swanson, K. S., Fahey Jr., G. C. (2010). Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats, Journal of animal Science, 88(9), 2978-87. https://doi.org/10.2527/jas.2009-2464

Binder, H. J. (2010). Role of colonic short-chain fatty acid transport in diarrhea. Annual Review of Physiology, 72, 297-313. https://doi.org/10.1146/annurev-physiol-021909-135817

Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., Brouns, F., & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. American Journal of Clinical Nutrition, 80(6), 1658-64. https://doi.org/10.1093/ajcn/80.6.1658

Chen, H.-J., Dai, F.-J., Chang, C.-R., Lau, Y.-Q., Chew, B.-S., & Chau, C. F. (2019). Impact of dietary ingredients on the interpretation of various fecal parameters in rats fed inulin. Journal of Food and Drug Analysis, 27(4), 869-875. https://doi.org/10.1016/j.jfda.2019.06.005

Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17-44. https://doi.org/10.3390%2Fnu7010017

Deschasaux, M., Zelek, L., Pouchieu, C., His, M., Hercberg, S., Galan, P., Latino-Martel, P., & Touvier, M. (2013). Prospective association between dietary fiber intake and breast cancer risk. PloS One, 8(11), e79718. https://doi.org/10.1371/journal.pone.0079718

Dyer, N., Hansen-Lardy, L., Krogh, D., Schaan, L., & Schamber, E. (2008). An outbreak of chronic pneumonia and polyarthritis syndrome caused by Mycoplasma bovis in feedlot bison (Bison bison). Journal of Veterinary Diagnostic Investigation, 20(3), 369-371. https://doi.org/10.1177/104063870802000321

Eswaran, S., Muir, J., & Chey, W. D. (2013). Fiber and functional gastrointestinal disorders. Official journal of the American College of Gastroenterology, 108(5), 718-727. https://doi.org/10.1038/ajg.2013.63

Fava, F., Gitau, R., Griffin, B. A., Gibson, G. R., Tuohy, K. M., & Lovegrove, J. A. (2013). The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome "at-risk" population. International Journal of Obesity, 37(2), 216-223. https://doi.org/10.1038/ijo.2012.33

Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J. R., Gibson, G., Viardot, A., Morrison, D., Thomas, E. L., & Bell, J. D. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications, 5, 3611. https://doi.org/10.1038/ncomms4611

Fung, K. Y., Cosgrove, L., Lockett, T., Head, R., & Topping, D. L. (2012). A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. British Journal of Nutrition, 108(5), 820-831. https://doi.org/10.1017/s0007114512001948

Henningsson, Å. M., Nyman, E. M. G. L., & Björck, I. M. E. (2002). Short‐chain fatty acid content in the hindgut of rats fed various composite foods and commercial dietary fibre fractions from similar sources. Journal of the Science of Food and Agriculture, 82(4), 385-393. https://doi.org/10.1002/jsfa.1049

Herrmann, E., Young, W., Rosendale, D., Conrad, R., Riedel, C. U., & Egert, M. (2017). Determination of resistant starch assimilating bacteria in fecal samples of mice by in vitro RNA-based stable isotope probing. Frontiers in Microbiology, 8, 1331. https://doi.org/10.3389%2Ffmicb.2017.01331

Jakobsdottir, G., Jädert, C., Holm, L., Nyman, M. E. (2013). Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. British Journal of Nutrition, 110(9), 1565-1572. https://doi.org/10.1017/s0007114513000809

Jung, T.-H., Jeon, W.-M., Han, K.-S. (2015). In vitro effects of dietary inulin on human fecal microbiota and butyrate production. Journal of Microbiology and Biotechnology, 25(9), 1555-1558. https://doi.org/10.4014/jmb.1505.05078

Kao, A. C. C., Spitzer, S., Anthony, D. C., Lennox, B., & Burnet, P. W. (2018). Prebiotic attenuation of olanzapine-induced weight gain in rats: analysis of central and peripheral biomarkers and gut microbiota. Translational Psychiatry, 8(1), 66. https://doi.org/10.1038/s41398-018-0116-8

Lasrado, L. D., & Rai, A. K. (2022). Use of Prebiotics for Addressing Gut Dysbiosis and Achieving Healthy Gut–Brain Axis. In I. P. Kaur & P. K. Deol (eds.), Probiotic Research in Therapeutics. Springer.

Lührs, H., Gerke, T., Müller, J. G., Melcher, R., Schauber, J., Boxberger, F., Scheppach, W., & Menzel, T. (2002). Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scandinavian Journal of Gastroenterology, 37(4), 458-466. https://doi.org/10.1080/003655202317316105

Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International, 95(1), 50-60. https://doi.org/10.5740/jaoacint.sge_macfarlane

Macfarlane, S., & Dillon, J. F. (2007). Microbial biofilms in the human gastrointestinal tract. Journal of Applied Microbiology, 102(5), 1187-1196. https://doi.org/10.1111/j.1365-2672.2007.03287.x

McOrist, A. L., Abell, G. C. J., Cooke, C., & Nyland, K. (2008). Bacterial population dynamics and faecal short-chain fatty acid (SCFA) concentrations in healthy humans. British Journal of Nutrition, 100(1), 138-146. https://doi.org/10.1017/s0007114507886351

Moreira, A. P. B., Texeira, T. F. S., Ferreira, A. B., Peluzio, M. D. C. G., & Alfenas, R. D. C. G. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. British Journal of Nutrition, 108(5), 801-809. https://doi.org/10.1017/s0007114512001213

Nilsson, U., & Nyman, M. (2005). Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerisation and solubility. British Journal of Nutrition, 94(5), 705-713. https://doi.org/10.1079/bjn20051531

Paturi, G., Nyanhanda, T., Butts, C. A., Herath, T. D., Monro, J. A, & Ansell, J. (2012). Effects of potato fiber and potato‐resistant starch on biomarkers of colonic health in rats fed diets containing red meat. Journal of Food Science, 77(10), H216-H223. https://doi.org/10.1111/j.1750-3841.2012.02911.x

Roberfroid, D., Lerude, M. P., Pérez-Cueto, A., & Kolsteren, P. (2006). Is the 2000 CDC growth reference appropriate for developing countries? Public Health Nutrition, 9(2), 266-268. https://doi.org/10.1079/phn2005838

Salem, H. R. (2018). The negative impact of fructose overconsumption on health. World Nutrition, 9(3), 284-291. https://doi.org/10.26596/wn.201893284-291

Sivaprakasam, S., Prasad, P. D., & Singh, N. (2016). Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacology & Therapeutics, 164, 144-151. https://doi.org/10.1016/j.pharmthera.2016.04.007

Sleeth, M., Psichas, A., & Frost, G. (2013). Weight gain and insulin sensitivity: a role for the glycaemic index and dietary fibre?. British Journal of Nutrition, 109(9), 1539-1541. https://doi.org/10.1017/s0007114512005016

Tuohy, K. M., Rouzaud, G. C. M., Bruck, W. M. & Gibson, G. R. (2005). Modulation of the human gut microflora towards improved health using prebiotics-assessment of efficacy. Current Pharmaceutical Design, 11(1), 75-90. https://doi.org/10.2174/1381612053382331

Venter, C. S. (2007). Prebiotics: an update. Journal of Family Ecology and Consumer Sciences, 35, 17-25. https://doi.org/10.10520/AJA03785254_19

Wang, L., Hu, L., Yan, S., Jiang, T., Fang, S., Wang, G., Zhao, J., Zhang, H., & Chen, W. (2017). Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food & Function, 8(5), 1966-1978. https://doi.org/10.1039/c7fo00031f

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105-108. https://doi.org/10.1126/science.1208344

Yamakawa, H., Bregonzio, C., Terrón, J. A., Falcón-Neri, A., Saavedra, J. M. (2002). Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke, 33(9), 2297-2303. https://doi.org/10.1161/01.str.0000027274.03779.f3

Zhou, Z., Cao, X., & Zhou, J. Y. H. 2013. Effect of resistant starch structure on short‐chain fatty acids production by human gut microbiota fermentation in vitro. Starch‐Stärke, 65(5-6), 509-516. https://doi.org/10.1002/star.201200166

Downloads

Publicado

2023-09-18

Como Citar

BAJWA, A. A., IQBAL, S., SOHAIB, M., NASIR, M., & ANJUM, A. A. (2023). Impact of galacto-oligosaccharides on prebiotic potential in the intestinal microbiota fermentation and health status in an animal model. Food Science and Technology, 43. https://doi.org/10.5327/fst.88922

Edição

Seção

Artigos Originais