Physicochemical profile, amino acid, and flavors of probiotic yogurt with the addition of nano ZnO food grade

Autores

DOI:

https://doi.org/10.5327/fst.13123

Palavras-chave:

yogurt, nanoparticle, functional food, ZnO

Resumo

Yogurt is a functional food produced through milk fermentation by yogurt bacteria. The addition of Lactiplantibacillus plantarum IIA-1A5 in the fermentation of yogurt yielding a yogurt probiotic has been shown to exhibit some functional properties. The effects of adding ZnO on the overall properties of the yogurt are unknown. This study aimed to investigate the effect of ZnO nanoparticles on the characteristics of conventional yogurt and yogurt probiotics. Four sets of yogurts were prepared: conventional yogurt, yogurt with added ZnO, yogurt probiotic, and yogurt probiotic with added ZnO. Most of the physicochemical properties of all yogurts were found to be comparable, except for fat and solid non-fat contents. The addition of ZnO increased the total lactic acid bacteria (LAB) in the yogurt, but it apparently inhibited L. plantarum IIA-1A5 as indicated by a lower LAB population in the yogurt probiotic with added ZnO compared with the yogurt probiotic without ZnO. However, the combination of L. plantarum IIA-1A5 and ZnO in yogurt significantly enhanced the DPPH inhibition activity. Additionally, the positive effects of ZnO were also observed on the total amino acid content, which significantly modulate the flavor compounds. This indicates that, overall, ZnO contributed to the better characteristics of yogurts.

Downloads

Não há dados estatísticos.

Referências

Afiyah, D. N., Sarbini, R. N., & Huda, M. S. (2022). Analysis of the Yogurt Nutrient Content and Antioxidant Activity by Adding Podang Urang Mango Juice (Mangifera Indica L.). Jurnal Ternak, 13(2), 47-52. https://doi.org/10.30736/jt.v13i2.144

Alfarisa, S., Lumban Toruan, P., Atina, A., Dwandaru, W. S. B., & Safitri, R. N. (2018). Morphological and Structural Studies of ZnO Micro-Nanorod Structures Synthesized Using a Low-Cost Hydrothermal Method. Makara Journal of Science, 22(2), 59-66. https://doi.org/10.7454/mss.v22i2.8243

Aloglu, H. S. & Oner, Z. (2011). Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. Journal of Dairy Science, 94(11), 5305-5314. https://doi.org/10.3168/jds.2011-4285

Arief, I. I., Jenie, B. S. L., Astawan, M., Fujiyama, K., & Witarto, A. B. (2015). Identification and probiotic characteristics of lactic acid bacteria isolated from Indonesian local beef. Asian Journal of Animal Sciences, 9(1), 25-36. https://doi.org/10.3923/ajas.2015.25.36

Ariningsih, E. (2016). Prospects of Nanotechnology Application in Agriculture and Food Processing in Indonesia. Badan Standarisasi Nasional. SNI Yogurt (SNI 01-2981-2009). (2009). Dewan Standar Indonesia.

Bierzuńska, P., Cais-Sokolińska, D., & Yiğit, A. (2019). Storage Stability of Texture and Sensory Properties of Yogurt with the Addition of Polymerized Whey Proteins. Foods, 8(11), 548. https://doi.org/10.3390/foods8110548

Boyaval, P. (1989). Lactic acid bacteria and metal ions. Le Lait, 69(2), 87-113.

Cientifica Report (2006). Nanotechnologies in the Food Industry. Retrieved from http://www.cientifica.com/www/details.php?id47

Darwish, A. M. G., Soliman, T. N., Elhendy, H. A., & El-kholy, W. M. (2021). Nano-encapsulated Iron and Folic Acid-Fortified Functional Yogurt Enhance Anemia in Albino Rats. Frontiers in Nutrition, 8, 654624. https://doi.org/10.3389/fnut.2021.654624

El-Saadony, M. T., Sitohy, M. Z., Ramadan, M. F., & Saad, A. M. (2021). Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innovative Food Science and Emerging Technologies, 69, 102645. https://doi.org/10.1016/j.ifset.2021.102645

El-Sayed, H. S., El-Sayed, S. M., & Youssef, A. M. (2021). Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt. Food Chemistry, 365, 130513. https://doi.org/10.1016/j.foodchem.2021.130513

Feng, M., Wang, Z. S., Zhou, A. G., & Ai, D. W. (2009). The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pakistan Journal of Nutrition, 8(8), 1164-1166. https://doi.org/10.3923/pjn.2009.1164.1166

Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12, 2826-2841. https://doi.org/10.1039/c5sm02958a

Hasan, B. M. S., & Abdulazeez, A. M. (2021). A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. Journal of Soft Computing and Data Mining, 2(1), 20-30.

Institute of Food Technologists for the Food and Drug Administration of the United States Department of Health and Human Services (IFT/FDA) (2001). Evaluation and Definition of Potentially Hazardous Foods. Comprehensive Reviews in Food Science and Food Safety, 2(2). Retrieved from https://www.fda.gov/files/food/published/Evaluation-and-Definition-of-Potentially-Hazardous-Foods.pdf

Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0202

Kachouri, F., Ksontini, H., Kraiem, M., Setti, K., Mechmeche, M., & Hamdi, M. (2015). Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. Journal of Food Science and Technology, 52(12), 7924-7933. https://doi.org/10.1007/s13197-015-1912-2

Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International, 38(4), 537-565. https://doi.org/10.1080/87559129.2020.1737709

Lee, W. J., & Lucey, J. A. (2010). Formation and Physical Properties of Yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127-1136. https://doi.org/10.5713/ajas.2010.r.05

Mega, O., Jahidin, J. P., Sulaiman, N. B., Yusuf, M., Arifin, M., & Arief, I. I. (2020). Total Count of Lactic Acid Bacteria in Goats and Cows Milk Yoghurt using Starter S. thermophilus RRAM-01, L. bulgaricus RRAM-01 and L. acidophilus IIA-2B4. Buletin Peternakan, 44(1), 50-56. https://doi.org/10.21059/buletinpeternak.v44i1.42311

Meilanie, R. T., Arief, I. I., & Taufik, E. (2018). Karakteristik Yogurt Probiotik dengan Penambahan Ekstrak Bunga Rosella (Hibiscus sabdariffa L) Selama Penyimpanan Suhu Dingin. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 6(1), 36-44. https://doi.org/10.29244/jipthp.6.1.36-44

Mishra, S. K., Kaur, R., & Mishra, K. K. (2018). Fermented Dairy Products as Zinc Fortification Vehicle. International Journal of Fermented Foods, 7(1), 55-63. https://doi.org/10.30954/2321-712X.01.2018.7

Perna, A., Intaglietta, I., Simonetti, A., & Gambacorta, E. (2014). Antioxidant activity of yogurt made from milk characterized by different casein haplotypes and fortified with chestnut and sulla honeys. Journal of Dairy Science, 97(11), 6662-6670. https://doi.org/10.3168/jds.2013-7843

Pradhan, N., Singh, S., Ojha, N., Srivastava, A., Barla, A., Rai, V., & Bose, S. (2015). Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Research International, 2015, 365672. https://doi.org/10.1155/2015/365672

Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002

Santillán-Urquiza, E., Méndez-Rojas, M. Á., & Vélez-Ruiz, J. F. (2017). Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT, 80, 462-469. https://doi.org/10.1016/j.lwt.2017.03.025

Savijoki, K., Ingmer, H. & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Appl Microbiology and Biotechnology, 71, 394-406. https://doi.org/10.1007/s00253-006-0427-1

Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G., & Selvaraju, S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. https://doi.org/10.1016/j.aninu.2016.06.003

Venu Gopal, V. R., & Kamila, S. (2017). Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Applied Nanoscience, 7(3-4), 75-82. https://doi.org/10.1007/s13204-017-0553-3

Yusof, H. M., Mohamad, R., Zaidan, U. H., & Rahman, N. A. (2020). Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microbial Cell Factories, 19(1), 10. https://doi.org/10.1186/s12934-020-1279-6

Zhang, W., Zhao, Y., Li, F., Li, L., Feng, Y., Min, L., Ma, D., Yu, S., Liu, J., Zhang, H., Shi, T., Li, F., & Shen, W. (2018). Zinc Oxide Nanoparticle Caused Plasma Metabolomic Perturbations Correlate with Hepatic Steatosis. Frontiers in Pharmacology, 9:57. https://doi.org/10.3389/fphar.2018.00057

Downloads

Publicado

2023-09-08

Como Citar

ARIEF, I. I., ABIDIN, Z., WULANDARI, Z., BUDIMAN, C., ADIYOGA, R., & KAMILA, E. A. (2023). Physicochemical profile, amino acid, and flavors of probiotic yogurt with the addition of nano ZnO food grade. Food Science and Technology, 43. https://doi.org/10.5327/fst.13123

Edição

Seção

Artigos Originais