Assessment of microbial ecology in artisanal salami during maturation via metataxonomic analysis

Autores

  • Manuela Maggiora Freitas BASTOS Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
  • Bruna Marchesan MARAN Universidade Federal de Santa Catarina, Centro Tecnológico, Departamento de Engenharia Química e de Alimentos, Florianópolis, Santa Catarina, Brazil.
  • Emanueli Marchesan MARAN Universidade Federal de Santa Catarina, Centro Tecnológico, Departamento de Engenharia Química e de Alimentos, Florianópolis, Santa Catarina, Brazil.
  • Marília MIOTTO-LINDNER Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Santa Catarina, Brazil.
  • Silvani VERRUCK Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Santa Catarina, Brazil. https://orcid.org/0000-0003-0266-5885

DOI:

https://doi.org/10.5327/fst.00147

Palavras-chave:

artisanal sausage, fungi, bacteria, metataxonomics

Resumo

The microbiota in artisanal fermented products plays a crucial role in determining the quality, color, texture, and flavor of salami. Thus, the aim of this study was to identify the microbial population in salami samples throughout the maturation process. Species identification was performed using second-generation high-throughput sequencing of the intergenic ITS region for fungi and the V3/V4 regions of the 16S rRNA gene for bacteria. For bacteria, 197 genera and 572 species were identified during maturation. Acinetobacter spp. (13%), Enterobacter (10%), Enterococcus (9%), and Bacillus (9%) were more abundant on day 0. On day 14 of fermentation, the predominant genera were Acinetobacter (20%), Enterobacter (18%), Citrobacter (17%), lactic acid bacteria genera (20%), and Aeromonas (10%). At the end of maturation (day 28), Companilactobacillus (10%) and Staphylococcus (64%) were predominant. In addition, 39 genera and 76 species of fungi were found throughout maturation. The most abundant fungal genera on day 0 were Yarrowia (24.96%), Pichia (23.91%), Fusarium (10.99%), and Candida (10.38%). On day 14, the prominent fungal genera were Hyphopichia (73.85%) and Yarrowia (18.81%), while on the 28th day, Hyphopichia (73.73%), Aspergillus (14.61%), and Wallemia (6.30%) were predominant. Finally, this study was able to identify the total microbiota using a metataxonomic approach.

Downloads

Não há dados estatísticos.

Referências

Abdul-Mutalib, N.-A., Amin Nordin, S., Osman, M., Ishida, N., Tashiro, K., Sakai, K., Tashiro, Y., Maeda, T., & Shirai, Y. (2015). Pyrosequencing analysis of microbial community and food-borne bacteria on restaurant cutting boards collected in Seri Kembangan, Malaysia, and their correlation with grades of food premises. International Journal of Food Microbiology, 200, 57-65. https://doi.org/10.1016/j.ijfoodmicro.2015.01.022

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

Andrews, S. (n.d.). FastQC: A quality control tool for high throughput sequence data. Retrieved from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Aspri, M., & Tsaltas, D. (2020). Microbes and the environment. In The Interaction of Food Industry and Environment (pp. 119-154). Elsevier. https://doi.org/10.1016/B978-0-12-816449-5.00004-7

Brasil (2017). Decreto Nº 9.013, de 29 de março de 2017. Regulamenta a Lei nº 1.283, de 18 de dezembro de 1950, e a Lei nº 7.889, de 23 de novembro de 1989, que dispõem sobre a inspeção industrial e sanitária de produtos de origem animal.

Brasil (2019). Decreto nº 9.918, de 18 de julho de 2019. Regulamenta o art. 10-A da Lei no 1.283, de 18 de dezembro de 1950, que dispõe sobre o processo de fiscalização de produtos alimentícios de origem animal produzidos de forma artesanal.

Burgain, A., Bensoussan, M., & Dantigny, P. (2015). Validation of a predictive model for the growth of chalk yeasts on bread. International Journal of Food Microbiology, 204, 47-54. https://doi.org/10.1016/j.ijfoodmicro.2015.03.026

Cano-García, L., Flores, M., & Belloch, C. (2013). Molecular characterization and aromatic potential of Debaryomyces hansenii strains isolated from naturally fermented sausages. Food Research International, 52(1), 42-49. https://doi.org/10.1016/j.foodres.2013.02.047

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621-1624. https://doi.org/10.1038/ismej.2012.8

Carvalheira, A., Casquete, R., Silva, J., & Teixeira, P. (2017). Prevalence and antimicrobial susceptibility of Acinetobacter spp. isolated from meat. International Journal of Food Microbiology, 243, 58-63. https://doi.org/10.1016/j.ijfoodmicro.2016.12.001

Cence, K. (2016). Avaliação do efeito das enzimas B-1,3-glucana e quitinase como alternativa no controle de desenvolvimento de fungos de superfície de salame [Doctoral dissertation]. Universidade Regional Integrada do Alto Uruguai e das Missões.

Chagas, T. P. G. (2015). Caracterização de Acinetobacter spp. multirresistentes produtores de carpenamases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil [Thesis]. Instituto Oswaldo Cruz.

Charmpi, C., Van der Veken, D., Van Reckem, E., De Vuyst, L., & Leroy, F. (2020). Raw meat quality and salt levels affect the bacterial species diversity and community dynamics during the fermentation of pork mince. Food Microbiology, 89, 103434. https://doi.org/10.1016/j.fm.2020.103434

Chen, P.-L., Lamy, B., & Ko, W.-C. (2016). Aeromonas dhakensis, an Increasingly Recognized Human Pathogen. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00793

Chirife, J., del Pilar Buera, M., & Labuza, Dr. T. P. (1996). Water activity, water glass dynamics, and the control of microbiological growth in foods. Critical Reviews in Food Science and Nutrition, 36(5), 465-513. https://doi.org/10.1080/10408399609527736

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., & de Hoon, M. J. L. (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11), 1422-1423. https://doi.org/10.1093/bioinformatics/btp163

Cocolin, L., & Rantsiou, K. (2012). Meat Fermentation. In Y. H. Hui (Ed.), Handbook of Meat and Meat Processing (2nd ed., pp. 557–572). CRC Press. https://doi.org/10.1201/b11479

Collins, C., Almuzara, M., Saigo, M., Montaña, S., Chiem, K., Traglia, G., Mussi, M. A., Tolmasky, M., Iriarte, A., Vay, C., & Ramirez, M. S. (2018). Whole-Genome Analysis of an Extensively Drug-Resistance Empedobacter falsenii Strain Reveals Distinct Features and the Presence of a Novel Metallo-ß-Lactamase (EBR-2). Current Microbiology, 75(8), 1084-1089. https://doi.org/10.1007/s00284-018-1498-9

Cruxen, C. E. dos S., Funck, G. D., Haubert, L., Dannenberg, G. da S., Marques, J. de L., Chaves, F. C., da Silva, W. P., & Fiorentini, Â. M. (2019). Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Research International, 122, 371-382. https://doi.org/10.1016/j.foodres.2019.04.018

Cunha, P. (2016). Métodos de tipagem microbiológica para o rastreamento e controle de surtos. Neoprospecta.

De Cesare, A. (2019). Metagenomics to investigate the dynamics of microbial communities in poultry and poultry products. Lohmann Information, 53(2), 4-11. Retrieved from https://lohmann-breeders.com/lohmanninfo/metagenomics-to-investigate-the-dynamics-of-microbial-communities-in-poultry-and-poultry-products/

Debonne, E., Meuninck, V., Vroman, A., & Eeckhout, M. (2021). Influence of environmental growth conditions on chalk yeasts causing bread spoilage. LWT, 148, 111756. https://doi.org/10.1016/j.lwt.2021.111756

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072. https://doi.org/10.1128/AEM.03006-05

Durlu-Özkaya, F., Ayhan, K., & Vural, N. (2001). Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Science, 58(2), 163-166. https://doi.org/10.1016/S0309-1740(00)00144-3

Feiner, G. (2006). The microbiology of specific bacteria. In Meat products handbook: Practical Science and technology (pp. 595-615). Woodhead and CRC Press LLC.

Feldmann, V. (2015). Avaliação de linhagens bacterianas obtidas a partir do kefir como cultura iniciadora para produção de embutido cárneo fermentado [Dissertação de mestrado]. Universidade Federal de Minas Gerais. Retrieved from http://hdl.handle.net/1843/BUBD-9XTFQL

Ferrocino, I., Bellio, A., Giordano, M., Macori, G., Romano, A., Rantsiou, K., Decastelli, L., & Cocolin, L. (2018). Shotgun Metagenomics and Volatilome Profile of the Microbiota of Fermented Sausages. Applied and Environmental Microbiology, 84(3), 02120-17. https://doi.org/10.1128/AEM.02120-17

Fontes, M. C., Martins, C., Martínez-Murcia, A. J., & Saavedra, M. J. (2012). Phylogenetic Diversity of Aeromonas from “Alheira,” a Traditional Portuguese Meat Product. Foodborne Pathogens and Disease, 9(8), 713-718. https://doi.org/10.1089/fpd.2011.1103

Franciosa, I., Alessandria, V., Dolci, P., Rantsiou, K., & Cocolin, L. (2018). Sausage fermentation and starter cultures in the era of molecular biology methods. International Journal of Food Microbiology, 279, 26-32. https://doi.org/10.1016/j.ijfoodmicro.2018.04.038

Gardini, F., Suzzi, G., Lombardi, A., Galgano, F., Crudele, M. A., Andrighetto, C., Schirone, M., & Tofalo, R. (2001). A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Research, 1(2), 161-167. https://doi.org/10.1016/S1567-1356(01)00024-1

Gomes, M. B. (2013). Caracterização de Enterococcus spp. isolados de alimentos quanto à presença de genes de virulência, da descarboxilase e de atividade antimicrobiana. Fundação Oswaldo Cruz.

Gottardo, E. T., Viana, C., Barcellos, V. C., Zanette, C. M., & Bersot, L. dos S. (2011). Embutidos cárneos fermentados artesanais como veículos de micro-organismos patogênicos de importância para a saúde pública. Boletim do Centro de Pesquisa de Processamento de Alimentos, 29(1). https://doi.org/10.5380/cep.v29i1.22761

Groenewald, M., & Smith, M. T. (2010). Re-examination of strains formerly assigned to Hyphopichia burtonii, the phylogeny of the genus Hyphopichia, and the description of Hyphopichia pseudoburtonii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 60(11), 2675-2680. https://doi.org/10.1099/ijs.0.018580-0

Guerrero-Legarreta, I. (2014). CANNING. In Encyclopedia of Meat Sciences (pp. 137-141). Elsevier. https://doi.org/10.1016/B978-0-12-384731-7.00101-X

Hammes, W. P., & Hertel, C. (1998). New developments in meat starter cultures. Meat Science, 49(Suppl. 1), S125-S138. https://doi.org/10.1016/S0309-1740(98)90043-2

Hong, S.-B., Kim, D.-H., & Samson, R. A. (2015). Aspergillus Associated with Meju, a Fermented Soybean Starting Material for Traditional Soy Sauce and Soybean Paste in Korea. Mycobiology, 43(3), 218-224. https://doi.org/10.5941/MYCO.2015.43.3.218

Hugas, M., & Monfort, J. M. (1997). Bacterial starter cultures for meat fermentation. Food Chemistry, 59(4), 547-554. https://doi.org/10.1016/S0308-8146(97)00005-8

Jančič, S., Frisvad, J. C., Džeroski, S., Gunde-Cimerman, N., Kocev, D., & Gostinčar, C. (2016). Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions. PLoS One, 11(12), e0169116. https://doi.org/10.1371/journal.pone.0169116

Kabak, B., & Dobson, A. D. W. (2009). Biological Strategies To Counteract the Effects of Mycotoxins. Journal of Food Protection, 72(9), 2006-2016. https://doi.org/10.4315/0362-028x-72.9.2006

Kress-Rogers, E. (1991). Solid-state pH sensors for food applications. Trends in Food Science & Technology, 2, 320-324. https://doi.org/10.1016/0924-2244(91)90735-2

Kumar, R., Sharma, J., & Singh, R. (2007). Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiological Research, 162(4), 384-390. https://doi.org/10.1016/j.micres.2006.06.012

Li, Z., Wang, Y., Pan, D., Geng, F., Zhou, C., & Cao, J. (2022). Insight into the relationship between microorganism communities and flavor quality of Chinese dry-cured boneless ham with different quality grades. Food Bioscience, 50(Part b), 102174. https://doi.org/10.1016/j.fbio.2022.102174

Lin, F., Cai, F., Luo, B., Gu, R., Ahmed, S., & Long, C. (2020). Variation of Microbiological and Biochemical Profiles of Laowo Dry-Cured Ham, an Indigenous Fermented Food, during Ripening by GC-TOF-MS and UPLC-QTOF-MS. Journal of Agricultural and Food Chemistry, 68(33), 8925-8935. https://doi.org/10.1021/acs.jafc.0c03254

Lücke, F. K. (2000). Utilization of microbes to process and preserve meat. Meat Science, 56(2), 105-115. https://doi.org/10.1016/S0309-1740(00)00029-2

Magistà, D., Susca, A., Ferrara, M., Logrieco, A. F., & Perrone, G. (2017). Penicillium species: crossroad between quality and safety of cured meat production. Current Opinion in Food Science, 17, 36-40. https://doi.org/10.1016/J.COFS.2017.09.007

Manassi, C. F., de Souza, S. S., Hassemer, G. de S., Sartor, S., Lima, C. M. G., Miotto, M., De Dea Lindner, J., Rezzadori, K., Pimentel, T. C., Ramos, G. L. de P. A., Esmerino, E., Holanda Duarte, M. C. K., Marsico, E. T., & Verruck, S. (2022). Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Research International, 154, 111035. https://doi.org/10.1016/j.foodres.2022.111035

Mannaa, M., & Kim, K. D. (2017). Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology, 45(4), 240-254. https://doi.org/10.5941/MYCO.2017.45.4.240

Mardanov, A. V., Kadnikov, V. V., & Ravin, N. V. (2018). Metagenomics: A Paradigm Shift in Microbiology. In Metagenomics (pp. 1-13). Elsevier. https://doi.org/10.1016/B978-0-08-102268-9.00001-X

Masoud, W., Poll, L., & Jakobsen, M. (2005). Influence of volatile compounds produced by yeasts predominant during processing of Coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Yeast, 22(14), 1133-1142. https://doi.org/10.1002/yea.1304

Mrkonjic Fuka, M., Tanuwidjaja, I., Zgomba Maksimovic, A., Zunabovic-Pichler, M., Kublik, S., Hulak, N., Domig, K. J., & Schloter, M. (2020). Bacterial diversity of naturally fermented game meat sausages: Sources of new starter cultures. LWT, 118, 108782. https://doi.org/10.1016/J.LWT.2019.108782

Olesen, P. T., & Stahnke, L. H. (2000). The influence of Debaryomyces hansenii and Candida utilis on the aroma formation in garlic spiced fermented sausages and model minces. Meat Science, 56(4), 357-368. https://doi.org/10.1016/S0309-1740(00)00063-2

Pandey, A. (1992). Recent process developments in solid-state fermentation. Process Biochemistry, 27(2), 109-117. https://doi.org/10.1016/0032-9592(92)80017-W

Patrignani, F., Iucci, L., Vallicelli, M., Guerzoni, M. E., Gardini, F., & Lanciotti, R. (2007). Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Science, 75(4), 676-686. https://doi.org/10.1016/J.MEATSCI.2006.09.017

Pfliegler, W. P., Pusztahelyi, T., & Pócsi, I. (2015). Mycotoxins – prevention and decontamination by yeasts. Journal of Basic Microbiology, 55(7), 805-818. https://doi.org/10.1002/jobm.201400833

Połka, J., Rebecchi, A., Pisacane, V., Morelli, L., & Puglisi, E. (2015). Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiology, 46, 342-356. https://doi.org/10.1016/j.fm.2014.08.023

Purriños, L., García Fontán, M. C., Carballo, J., & Lorenzo, J. M. (2013). Study of the counts, species and characteristics of the yeast population during the manufacture of dry-cured “lacón”. Effect of salt level. Food Microbiology, 34(1), 12-18. https://doi.org/10.1016/j.fm.2012.11.003

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219

Rantsiou, K., Urso, R., Iacumin, L., Cantoni, C., Cattaneo, P., Comi, G., & Cocolin, L. (2005). Culture-Dependent and -Independent Methods To Investigate the Microbial Ecology of Italian Fermented Sausages. Applied and Environmental Microbiology, 71(4), 1977-1986. https://doi.org/10.1128/AEM.71.4.1977-1986.2005

Roselino, M. N., & Cavallini, D. C. U. (2016). Desenvolvimento de um embutido cárneo fermentado, com teores reduzidos de gordura e sais de cura, através da utilização de culturas probióticas [thesis]. Universidade Estadual Paulista (Unesp).

Sánchez Mainar, M., Stavropoulou, D. A., & Leroy, F. (2017). Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review. International Journal of Food Microbiology, 247, 24-37. https://doi.org/10.1016/j.ijfoodmicro.2016.05.021

Sarkadi, L. S. (2019). Biogenic Amines in Fermented Fish. https://doi.org/10.1039/9781788015813-00062

Sayas-Barberá, E., Viuda-Martos, M., Fernández-López, F., Pérez-Alvarez, J. A., & Sendra, E. (2012). Combined use of a probiotic culture and citrus fiber in a traditional sausage ‘Longaniza de Pascua.’ Food Control, 27(2), 343-350. https://doi.org/10.1016/j.foodcont.2012.04.009

Schmitt, B. (2017). Avaliação sensorial do uso de diferentes culturas iniciadoras na produção de salame tipo italiano do Frigorífico Antônio Carlos. Universidade Federal de Santa Catarina.

Senter, L. (2014). Isolamento e caracterização de bactérias ácido-láticas de linguiças suínas defumadas e desenvolvimento de embutido potencialmente funcional. Universidade Federal do Rio Grande do Sul.

Smyth, R. P., Schlub, T. E., Grimm, A., Venturi, V., Chopra, A., Mallal, S., Davenport, M. P., & Mak, J. (2010). Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene, 469(1-2), 45-51. https://doi.org/10.1016/j.gene.2010.08.009

Sonjak, S., Ličen, M., Frisvad, J. C., & Gunde-Cimerman, N. (2011). The mycobiota of three dry-cured meat products from Slovenia. Food Microbiology, 28(3), 373-376. https://doi.org/10.1016/J.FM.2010.09.007

Stellato, G., La Storia, A., De Filippis, F., Borriello, G., Villani, F., & Ercolini, D. (2016). Overlap of Spoilage-Associated Microbiota between Meat and the Meat Processing Environment in Small-Scale and Large-Scale Retail Distributions. Applied and Environmental Microbiology, 82(13), 4045-4054. https://doi.org/10.1128/AEM.00793-16

Stratev, D., & Rusev, I. (2012). Prevalence and survival of Aeromonas spp. in foods-a review. Revue de Médecine Vétérinaire, 163(10), 486-494.

Tian, Y., Zheng, P., Mu, Y., Su, W., & Chen, T. (2022). Correlation analysis of normal and moldy beef jerky microbiota with Volatile compounds. LWT, 162, 113457. https://doi.org/10.1016/j.lwt.2022.113457

Tu, R.-J., Wu, H.-Y., Lock, Y.-S., & Chen, M.-J. (2010). Evaluation of microbial dynamics during the ripening of a traditional Taiwanese naturally fermented ham. Food Microbiology, 27(4), 460-467. https://doi.org/10.1016/j.fm.2009.12.011

Van Dexter, S., & Boopathy, R. (2019). Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite. Environmental Science and Pollution Research, 26(33), 34067-34072. https://doi.org/10.1007/s11356-018-3292-4

Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S.-B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78(1), 343-371. https://doi.org/10.1016/j.simyco.2014.09.001

Wang, X., Zhang, Y., Ren, H., & Zhan, Y. (2018). Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing. LWT, 90, 108-115. https://doi.org/10.1016/j.lwt.2017.12.011

Wang, Y., & Qian, P.-Y. (2009). Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS One, 4(10), e7401. https://doi.org/10.1371/journal.pone.0007401

Wen, R., Dong, Z., Lv, Y., Liu, H., Bayana, B., Kong, B., & Chen, Q. (2023). Comparative evaluation of the flavour-promoting role of autochthonous yeast strains on dry sausages. LWT, 184, 115032. https://doi.org/10.1016/j.lwt.2023.115032

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky &, T. J. White (Eds.), PCR Protocols (pp. 315–322). Elsevier. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Xu, X., Wu, B., Zhao, W., Lao, F., Chen, F., Liao, X., & Wu, J. (2021). Shifts in autochthonous microbial diversity and volatile metabolites during the fermentation of chili pepper (Capsicum frutescens L.). Food Chemistry, 335, 127512. https://doi.org/10.1016/j.foodchem.2020.127512

Zaman, K., Gupta, P., Kaur, V., & Mohan, B. (2017). Empedobacter falsenii: a rare non-fermenter causing urinary tract infection in a child with bladder cancer. SOA: Clinical Medical Cases, Reports & Reviews, 1(1), 002.

Zeng, Y., Dong, N., Zhang, R., Liu, C., Sun, Q., Lu, J., Shu, L., Cheng, Q., Chan, E. W.-C., & Chen, S. (2020). Emergence of an Empedobacter falsenii strain harbouring a tet(X)-variant-bearing novel plasmid conferring resistance to tigecycline. Journal of Antimicrobial Chemotherapy, 75(3), 531-536. https://doi.org/10.1093/jac/dkz489

Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107

Downloads

Publicado

2024-07-29

Como Citar

BASTOS, M. M. F., MARAN, B. M., MARAN, E. M., MIOTTO-LINDNER, M., & VERRUCK, S. (2024). Assessment of microbial ecology in artisanal salami during maturation via metataxonomic analysis. Food Science and Technology, 44. https://doi.org/10.5327/fst.00147

Edição

Seção

Artigos Originais