Detection and characterization of adulterants in baru and soursop oils

Autores

  • Tamara Mendes Leite Silva Trindade Postgraduate Program in Chemistry, Universidade Federal do Tocantins – UFT, Campus de Gurupi, Gurupi, TO, Brasil
  • Carla Jovania Gomes Colares Department of Exact Sciences and Biotechnology, Universidade Federal do Tocantins – UFT, Campus de Gurupi, Gurupi, TO, Brasil
  • Nelson Luis Gonçalves Dias de Souza Department of Exact Sciences and Biotechnology, Federal University of Tocantins, University Campus of Gurupi, Gurupi, Tocantins, Brazil. https://orcid.org/0000-0002-5980-3209

DOI:

https://doi.org/10.5327/fst.122722

Palavras-chave:

Multivariate analysis, vibrational spectroscopy, portable near-infrared

Resumo

The presence of vegetable oils in the pharmaceutical and cosmetic industries boosts their production and commercialization, maximizing the economic potential, however to increase profits, vegetable oils with high added value are the target of adulteration practices. This negatively affects the quality of the product and compromises the bioactive properties of these oils. The objective of this study was to build partial least squares regression models to identify baru oil and soursop oil samples adulterated with soybean oil. For data collection the oils samples were characterized using portable near-infrared spectrometer and Fourier-transform infrared spectrometer. These techniques were chosen because both provide information about the functional groups of chemical compounds, however portable equipment, being cheaper, presents signals with lower spectral resolution. Thus, the objective of the work is also to verify if the results using both equipment are similar. The developed regression models were effective; however, the near-infrared technique presented some limitations in the identification of soursop oil. This is because for the construction of his model it was necessary to use a smaller number of variables and levels of adulteration. Nevertheless, high R² values and relatively low errors were obtained for all models, making it possible to identify the adulteration.

 

Pratica Application: Adulteration analysis of baru and soursop oils by infrared spectroscopy and portable equipment

Downloads

Não há dados estatísticos.

Referências

Al-Ahmed, N., Alsowaidi, S., & Vadas, P. (2008). Peanut Allergy: An Overview. Allergy, Asthma & Clinical Immunology, 4(4), 139-143.

Basri, K. N., Hussain, M. N., Bakar, J., Sharif, Z., Khir, M. F. A., & Zoolfakar, A. S. (2017). Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 335-342.

Bunaciu, A. A., Fleschin, S., & Aboul-Enein, H. Y. (2022). Detection of sunflower oils adulteration by ATR-FTIR spectra. Chemical Papers, 76(9), 5533-5539.

Chen, T., Chen, X., Lu, D., & Chen, B. (2018). Detection of Adulteration in Canola Oil by Using GC-IMS and Chemometric Analysis. International Journal of Analytical Chemistry, 2018, 1-8.

da Costa, G. B., Fernandes, D. D. S., Gomes, A. A., de Almeida, V. E., & Veras, G. (2016). Using near infrared spectroscopy to classify soybean oil according to expiration date. Food Chemistry, 196, 539-543.

da Silva Medeiros, M. L., Brasil, Y. L., Cruz-Tirado, L. J. P., Lima, A. F., Godoy, H. T., & Barbin, D. F. (2023). Portable NIR spectrometer and chemometric tools for predicting quality attributes and adulteration levels in butteroil. Food Control, 144, 109349.

da Silveira, R., Vágula, J. M., de Lima Figueiredo, I., Claus, T., Galuch, M. B., Santos Junior, O. O., & Visentainer, J. V. (2017). Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: A comparison with traditional methods adopted by food industry to identify fraud. Food Research International, 102, 43-50.

dos Santos, P., de Aguiar, A. C., Viganó, J., Boeing, J. S., Visentainer, J. V., & Martínez, J. (2016). Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: Global yield, kinetics and fatty acid composition. The Journal of Supercritical Fluids, 107, 75-83.

El-Hamidi, M., & Zaher, F. A. (2018). Production of vegetable oils in the world and in Egypt: an overview. Bulletin of the National Research Centre, 42, 1-9.

Elagbar, Z. A., Naik, R. R., Shakya, A. K., & Bardaweel, S. K. (2016). Fatty Acids Analysis, Antioxidant and Biological Activity of Fixed Oil of Annona muricata L. Seeds. Journal of Chemistry, 2016, 6948098.

Fasakin, A., Oluwaseun, F., Obijole, O., & Oseni, O. (2008). Compositional analyses of the seed of sour sop, Annona muricata L., as a potential animal feed supplement. Scientific Research and Essays, 3, 521-523.

Galtier, O., Dupuy, N., Le Dréau, Y., Ollivier, D., Pinatel, C., Kister, J., & Artaud, J. (2007). Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Analytica Chimica Acta, 595(1), 136-144.

Hui, C., Zan, L., & Chao, T. (2018). Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models. Vibrational Spectroscopy, 99, 178-183.

Jalkh, R., El-Rassy, H., Chehab, G. R., & Abiad, M. G. (2018). Assessment of the Physico-Chemical Properties of Waste Cooking Oil and Spent Coffee Grounds Oil for Potential Use as Asphalt Binder Rejuvenators. Waste and Biomass Valorization, 9(11), 2125-2132.

Kaufmann, K. C., Sampaio, K. A., García-Martín, J. F., & Barbin, D. F. (2022). Identification of coriander oil adulteration using a portable NIR spectrometer. Food Control, 132, 108536.

Kiefer, J., Lampe, A. I., Nicoli, S. F., Lucarini, M., & Durazzo, A. (2019). Identification of Passion Fruit Oil Adulteration by Chemometric Analysis of FTIR Spectra. Molecules, 24(18).

Lastras, C., Revilla, I., González-Martín, M. I., & Vivar-Quintana, A. M. (2021). Prediction of fatty acid and mineral composition of lentils using near infrared spectroscopy. Journal of Food Composition and Analysis, 102, 104023.

Lemos, M. R. B., Siqueira, E. M. d. A., Arruda, S. F., & Zambiazi, R. C. (2012). The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, 48(2), 592-597.

Lin, H.-M., Lee, M.-H., Liang, J.-C., Chang, H.-Y., Huang, P., & Tsai, C.-C. (2020). A review of using partial least square structural equation modeling in e-learning research. British Journal of Educational Technology, 51(4), 1354-1372.

Mendes, T. O., Rocha, R. A. d., Porto, B. L. S., Oliveira, M. A. L. d., Anjos, V. d. C. d., & Bell, M. J. V. (2015). Quantification of extra-virgin olive oil adulteration with soybean oil: a comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches. Food Analytical Methods, 8(9), 2339-2346.

Neto, B., Scarminio, I., & Bruns, R. (2006). 25 years of chemometrics in Brazil. Quimica Nova, 29, 1401-1406.

Okigbo, R., & Obire, O. (2009). Mycoflora and production of wine from fruits of soursop (Annona Muricata L.). International Journal of Wine Research, 2009, 1-1.

Olivieri, A. C. (2018). Introduction to Multivariate Calibration: A Practical Approach (1 ed.). Switzerland: Springer International Publishing.

Öztürk, B., Yalçin, A., & Özdemir, D. (2010). Determination of Olive Oil Adulteration with Vegetable Oils by near Infrared Spectroscopy Coupled with Multivariate Calibration. Journal of Near Infrared Spectroscopy, 18(3), 191-201.

Pan, X., Li, K., Chen, Z., & Yang, Z. (2021). Identifying Wood Based on Near-Infrared Spectra and Four Gray-Level Co-Occurrence Matrix Texture Features. Forests, 12(11), 1527.

Pereira, C. G., Leite, A. I. N., Andrade, J., Bell, M. J. V., & Anjos, V. (2019). Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. LWT, 107, 1-8.

Pereira, S. N. G., Lima, A. B. S. D., Oliveira, T. D. F., Batista, A. S., Jesus, J. C. D., Ferrão, S. P. B., & Santos, L. S. (2022). Non-destructive detection of soybean oil addition in babassu oil by MIR spectroscopy and chemometrics. LWT, 154, 112857.

Rosipal, R. (2011). Nonlinear Partial Least Squares An Overview. In H. Lodhi & Y. Yamanishi (Eds.), Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques (pp. 169-189). Hershey: IGI Global.

Su, N., Pan, F., Wang, L., & Weng, S. (2021). Rapid Detection of Fatty Acids in Edible Oils Using Vis-NIR Reflectance Spectroscopy with Multivariate Methods. Biosensors, 11(8), 261.

Sun, X., Lin, W., Li, X., Shen, Q., & Luo, H. (2015). Detection and quantification of extra virgin olive oil adulteration with edible oils by FT-IR spectroscopy and chemometrics. Analytical Methods, 7(9), 3939-3945.

Wang, Z., Wu, Q., & Kamruzzaman, M. (2022). Portable NIR spectroscopy and PLS based variable selection for adulteration detection in quinoa flour. Food Control, 138, 108970.

Wu, Z., Li, H., & Tu, D. (2015). Application of Fourier Transform Infrared (FT-IR) Spectroscopy Combined with Chemometrics for Analysis of Rapeseed Oil Adulterated with Refining and Purificating Waste Cooking Oil. Food Analytical Methods, 8(10), 2581-2587.

Wulandari, L., Dewi, M. K. C., Kristiningrum, N., & Siswanti, Y. N. (2020). Determination of Total Phenolic Content and NIR-Chemometrics Classification Model of Queen and Local Varieties of Soursop (Annona muricata L.) Leaf Powder Indonesian Journal of Chemistry, 20(3), 520-529.

Downloads

Publicado

2023-04-28

Como Citar

Trindade, T. M. L. S., Colares, C. J. G., & Souza, N. L. G. D. de. (2023). Detection and characterization of adulterants in baru and soursop oils. Food Science and Technology, 43. https://doi.org/10.5327/fst.122722

Edição

Seção

Artigos Originais