In vitro apoptotic activity of Lablab purpureus (L.) Sweet low-molecular-weight peptides

Autores

DOI:

https://doi.org/10.5327/fst.124922

Palavras-chave:

Lablab purpureus, caspase-3, caspase-9, p53

Resumo

Cancer prevalence is a rapidly growing concern globally. Traditional treatment protocols, radiotherapy, and chemotherapy are associated with adverse side effects on the human body. Therefore, there is a need for alternative therapies. Peptides from leguminous protein are known for exhibiting positive biological activity that could target cancer cells and minimize side effects. This study assessed the apoptotic ability of peptide fractions 2. The fraction was derived from the pepsin hydrolysate of Lablab purpureus that was fractionated by ultrafiltration and subsequently by reverse-phase high-pressure liquid chromatography. The markers of apoptosis (caspase-9 and -3, p53, and annexin V-PI) were then observed for efficacy. Caspase-9 and -3 showed activity to a greater degree in cancerous cell line A549 (2.3-fold and 1.1-fold) and MCF-7 (2.7-fold and 1.8-fold), respectively, compared to camptothecin (positive control). Expression of p53 on treated cancerous cell lines (A549 and MCF-7) demonstrated greater ability over the non-cancerous cell line (HEK293) with A549 showing the highest activity at 29.923 µg/mL. Finally, annexin V-PI staining sorted cells into phases of apoptosis. Treated A549 and MCF-7 cells detected 85.4% and 89.6% of cells undergoing apoptosis. Overall, Fraction 2 triggered apoptosis in cancer cell lines while minimally harming non-cancerous cells.

Downloads

Não há dados estatísticos.

Referências

Alison, M. R. (2001). Cancer. Encyclopedia of life sciences. Nature Publishing Group.

An, W., Lai, H., Zhang, Y., Liu, M., Lin, X., & Cao, S. (2019). Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Frontiers in Pharmacology, 10, 758. https://doi.org/10.3389%2Ffphar.2019.00758

Barman, A., Marak, C. M., Barman, R. M., & Sangma, C. S. (2018). Nutraceutical Properties of Legume Seeds and Their Impact on Human Health. In J. C. Jimenez-Lopez (ed.), Legume Seed Nutraceutical Research. IntechOpen.

Bowne, W. B., Michl, J., Bluth, M. H., Zenilman, M. E., & Pincus, M. R. (2007). Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Cancer Therapy, 5B, 331-344.

Brown, J. M., & Attardi, L. D. (2005). The role of apoptosis in cancer development and treatment response. Nature Reviews, 5(3), 231-237. https://doi.org/10.1038/nrc1560

Chen, Z., Li, W., Santhanam, R. K., Wang, C., Gao, X., Chen, Y., Wang, C., Xu, L., & Chen, H. (2019). Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: isolation, identification and molecular docking study. European Food Research and Technology, 245(3), 677-689. https://doi.org/10.1007/s00217-018-3190-5

Cheng, A., Raai, M. N., Zain, N. A. M., Massawe, F., Singh, A., & Wan-Mohtar, W. A. I. Q. I. (2019). In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Security, 11(6), 1205-1215. https://doi.org/10.1007/s12571-019-00977-0

D’arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582-592. https://doi.org/10.1002/cbin.11137

Dwarka, D., Thaver, V., Naidu, M., Koorbanally, N., & Baijnath, H. (2017). In Vitro chem-preventative activity of Stelitzia nicolai aril extract containing bilirubin. African Journal of Traditional Complementary and Alternative Medicines, 14(3), 147-156. https://doi.org/10.21010%2Fajtcam.v14i3.16

Gupta, N., & Bhagyawant, S. S. (2021). Bioactive peptide of Cicer arietinum L. induces apoptosis in human endometrial cancer via DNA fragmentation and cell cycle arrest. 3 Biotech, 11(2), 63. https://doi.org/10.1007/s13205-020-02614-6

He, R., Girgih, A., Malomo, S., Ju, X., & Aluko, R. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5(1), 219-227. https://doi.org/10.1016/j.jff.2012.10.008

Huang, Y., Wang, X., Wang, H., Liu, Y., & Chen, Y. (2011). Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. American Association for Cancer Research, 10(3), 416-426. https://doi.org/10.1158/1535-7163.mct-10-0811

Jan, R., & Chaudhry, G. (2019). Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Advanced Pharmaceutical Bulletin, 9(2), 205-218. https://doi.org/10.15171%2Fapb.2019.024

Kwan, Y. P., Saito, T., Ibrahim, D., Al-Hassan, F. M. S., Oon, C. E., Chen, Y., Jothy, S. L., Kanwar, J. R., & Sasidharan, S. (2016). Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharmaceutical Biology, 54(7), 1223-1236. https://doi.org/10.3109/13880209.2015.1064451

Letai, A. (2017). Apoptosis and Cancer. Annual Review of Cancer Biology, 1, 275-294. https://doi.org/10.1146/annurev-cancerbio-050216-121933

Logue, S. E., Elgendy, M. & Martin, S. J. (2009). Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nature Protocols, 4(9), 1383-1395. https://doi.org/10.1038/nprot.2009.143

Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. Journal of Biomedical Science, 24(1), 21. https://doi.org/10.1186/s12929-017-0328-x

Naiker, T. S., Baijnath, H., Amonsou, E. O., & Mellem, J. J. (2020). Effect of steaming and dehydration on the nutritional quality and functional properties of protein isolates produced from Lablab purpureus (L.) Sweet (hyacinth bean). Journal of Food Processing and Preservation, 44(2), e14334. https://doi.org/10.1111/jfpp.14334

Orona-Tamayo, D., Valverde, M. E., & López, O. P. (2018). Bioactive Peptides from Selected Latin American Food Crops – A Nutraceutical and Molecular Approach. Critical Reviews in Food Science and Nutrition, 59(12), 1949-1975. https://doi.org/10.1080/10408398.2018.1434480

Quintal-Bojórquez, N., & Segura-Campos, M. R. (2021). Bioactive Peptides as Therapeutic Adjuvants for Cancer. Nutrition and Cancer, 73(8), 1309-1321. https://doi.org/10.1080/01635581.2020.1813316

Rao, S., Chinkwo, K. A., Santhakumar, A. B., & Blanchard, C. L. (2018). Inhibitory Effects of Pulse Bioactive Compounds on Cancer Development Pathways. Diseases, 6(3), 72. https://doi.org/10.3390/diseases6030072

Rayaprolu, S. J., Hettiarachchy, N. S., Horax, R., Kumar-Phillips, G., Liyanage, R., Lay, J., & Chen, P. (2017). Purification and characterization of a peptide from soybean with cancer cell proliferation inhibition. Journal of Food Biochemistry, 41(4), e12374. https://doi.org/10.1111/jfbc.12374

Sipahli, S., Dwarka, D., Amonsou, E., & Mellem, J. (2022). In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. Food Science and Technology, 42, e55220. https://doi.org/10.1590/fst.55220

Tak, Y., Kaur, M., Amarowicz, R., Bhatia, S., & Gautam, C. (2021). Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. International Journal of Peptide Research and Therapeutics, 27(1), 207-2068. https://doi.org/10.1007/s10989-021-10234-8

Tang, C., Wang, X., & Yang, X. (2009). Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chemistry, 114(4), 1484-1490. https://doi.org/10.1016/j.foodchem.2008.11.049

Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., & Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35, 100588. https://doi.org/10.1016/j.fbio.2020.100588

World Health Organization (WHO) (2020). International Agency for Research on Cancer. WHO. Retrieved from https://gco.iarc.fr/tomorrow/en/dataviz/isotype

Xu, X., Lai, Y., & Hua, Z. (2019). Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports, 39(1), bsr20180992. https://doi.org/10.1042/bsr20180992

Xue, Z., Wen, H., Zhai, L., Yu, Y., Li, Y., Yu, W., Cheng, A., Wang, C., & Kou, X. (2015). Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Research International, 77(Part 2), 75-81. https://doi.org/10.1016/j.foodres.2015.09.027

Zivny, J., Jr., P. K., Pytlik, R., & Andera, L. (2010). The Role of Apoptosis in Cancer Development and Treatment: Focusing on the Development and Treatment of Hematologic Malignancies. Current Pharmaceutical Design, 16(1), 11-33. https://doi.org/10.2174/138161210789941883

Downloads

Publicado

2023-08-08

Como Citar

SIPAHLI, S., DWARKA, D., AMONSOU, E., & MELLEM, J. (2023). In vitro apoptotic activity of Lablab purpureus (L.) Sweet low-molecular-weight peptides. Food Science and Technology, 43. https://doi.org/10.5327/fst.124922

Edição

Seção

Artigos Originais