Optimizing reaction condition of octenyl succinic anhydride on heat-moisture-treated sago starch and its application for biodegradable film

Autores

  • Angela Myrra Puspita DEWI Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Sleman, Yogyakarta, Indonesia. https://orcid.org/0000-0001-6237-5113
  • Umar SANTOSO Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Sleman, Yogyakarta, Indonesia. https://orcid.org/0000-0002-5111-189X
  • Yudi PRANOTO Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Sleman, Yogyakarta, Indonesia. https://orcid.org/0000-0001-6505-0402
  • Djagal Wiseso MARSENO Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Technology, Sleman, Yogyakarta, Indonesia. https://orcid.org/0000-0002-2498-7482

DOI:

https://doi.org/10.5327/fst.17523

Palavras-chave:

sago starch, heat-moisture-treated, octenyl succinic anhydride, biodegradable film

Resumo

This study presented the impact of pH and octenyl succinic anhydride (OSA) concentration on the esterification reaction of heat-moisture-treated sago starch (HMT-S) using response surface methodology to achieve optimum degree of substitution (DS), reaction efficiency (RE), and water contact angle (CA). The results showed that HMT-OSA sago starch (HMT-OS) starch exhibited an optimum pH of 7.26 and an OSA concentration of 4.53%. The DS value, RE, and water CA of optimized HMT-OS starch were 0.0121, 33.07%, and 90.11°, respectively. Furthermore, the optimized HMT-OS was used to evaluate the effect of starch modification on film characteristics. HMT-OS film has the best moisture-proof and mechanical properties compared to control (NS), HMT-S, and N-OS films, as indicated by lower water vapor permeability (28.69 g H2O.mm/s.m2.Pa × 10-11), water solubility (26.61%), higher CA (104.40°), elongation at break (85.63%), and transparency (3.25% mm-1). According to the scanning electron micrographic images, the absence of cracks or pores was attributed to the waterproof properties and flexibility of the film. Conversely, x-ray diffraction results showed that the crystallinity of HMT-OS film decreased to 36.05%.

Downloads

Não há dados estatísticos.

Referências

Abiddin, Z., Yusoff, A., & Ahmad, N. (2015). Optimisation of reaction conditions of octenyl succinic anhydride (OSA) modified sago starch using response surface methodology (RSM). Internationa; Food Research Journal, 22(3), 930-935.

Acevedo, B. A., Villanueva, M., Chaves, M. G., Avanza, M. V., & Ronda, F. (2022). Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocolloids, 124(Part A), 107266. https://doi.org/10.1016/j.foodhyd.2021.107266

American Society for Testing and Materials (ASTM) (1998). ASTMD412-98a. Standard Test Methods for vulcanized rubber and thermoplastic elastomers-tension Annual book of ASTM standards. ASTM.

Bae, H. J., Cha, D. S., Whiteside, W. S., & Park, H. J. (2008). Film and pharmaceutical hard capsule formation properties of mungbean, waterchestnut, and sweet potato starches. Food Chemistry, 106(1), 96-105. https://doi.org/10.1016/j.foodchem.2007.05.070

Bai, Y., Shi, Y. C., Herrera, A., & Prakash, O. (2011). Study of octenyl succinic anhydride-modified waxy maize starch by nuclear magnetic resonance spectroscopy. Carbohydrate Polymers, 83(2), 407-413. https://doi.org/10.1016/j.carbpol.2010.07.053

Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972-978. https://doi.org/10.1016/j.jfoodeng.2006.07.016

Bhosale, R., & Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66(4), 521-527. https://doi.org/10.1016/j.carbpol.2006.04.007

Chen, X., He, X., & Huang, Q. (2014). Effects of hydrothermal pretreatment on subsequent octenylsuccinic anhydride (OSA) modification of cornstarch. Carbohydrate Polymers, 101, 493-498. https://doi.org/10.1016/j.carbpol.2013.09.079

Dewi, A. M. P., Santoso, U., Pranoto, Y., & Marseno, D. W. (2022). Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers, 14(6), 1086. https://doi.org/10.3390/polym14061086

Du, M., Cao, T., Yu, M., Zhang, C., & Xu, W. (2023). Effect of heat-moisture treatment on physicochemical properties of chickpea starch. Food Science and Technology, 43, e108822. https://doi.org/10.1590/fst.108822

Fu, L., Zhu, J., Zhang, S., Li, X., Zhang, B., Pu, H., Li, L., & Wang, Q. (2018). Hierarchical structure and thermal behavior of hydrophobic starch-based films with different amylose contents. Carbohydrate Polymers, 181, 528-535. https://doi.org/10.1016/j.carbpol.2017.12.010

Gao, W., Liu, P., Wang, B., Kang, X., Zhu, J., Cui, B., & El-, A. M. A. (2021). Synthesis, physicochemical and emulsifying properties of C-3 octenyl succinic anhydride-modified corn starch. Food Hydrocolloids, 120, 106961. https://doi.org/10.1016/j.foodhyd.2021.106961

Gontard, N., Duchez, C., Cuq, J.-L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology, 29(1), 39-50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x

Herniou-Julien, C., Mendieta, J. R., & Gutiérrez, T. J. (2019). Characterization of biodegradable / non-compostable fi lms made from cellulose acetate / corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids, 89, 67-79. https://doi.org/10.1016/j.foodhyd.2018.10.024

Huang, T. T., Zhou, D. N., Jin, Z. Y., Xu, X. M., & Chen, H. Q. (2016). Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54(Part A), 202-210. https://doi.org/10.1016/j.foodhyd.2015.10.002

Hui, R., Qi-he, C., Ming-liang, F., Qiong, X., & Guo-qing, H. (2009). Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chemistry, 114(1), 81-86. https://doi.org/10.1016/j.foodchem.2008.09.019

Indrianti, N., & Pranoto, Y. (2018). Physicochemical properties of modified sweet potato starch through heat moisture treatment. AIP Conference Proceedings .

Indrianti, N., Pranoto, Y., & Abbas, A. (2018). Preparation and characterization of edible films made from modified sweet potato starch through heat moisture treatment. Indonesian Journal of Chemistry, 18(4), 679-687. https://doi.org/10.22146/ijc.26740

Jiranuntakul, W., Puncha-arnon, S., & Uttapap, D. (2014). Enhancement of octenyl succinylation of cassava starch by prior modification with heat-moisture treatment. Starch/Staerke, 66(11-12), 1071-1078. https://doi.org/10.1002/star.201400115

Li, J., Ye, F., Lei, L., & Zhao, G. (2018). Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance. International Journal of Biological Macromolecules, 115, 547-553. https://doi.org/10.1016/j.ijbiomac.2018.04.093

Li, J., Ye, F., Liu, J., & Zhao, G. (2015). Effects of octenylsuccination on physical, mechanical and moisture-proof properties of stretchable sweet potato starch film. Food Hydrocolloids, 46, 226-232. https://doi.org/10.1016/j.foodhyd.2014.12.017

Liu, K., Zhang, B., Chen, L., Li, X., & Zheng, B. (2019). Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chemistry, 271, 102-108. https://doi.org/10.1016/j.foodchem.2018.07.193

Lv, Q., Li, G., Xie, Q., Zhang, B., Li, X., Pan, Y., & Chen, H. (2018). Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physicochemical, structural and digestibility characteristics of sweet potato starch. Food Chemistry, 256, 413-418. https://doi.org/10.1016/j.foodchem.2018.02.147

Majzoobi, M., Pesaran, Y., Mesbahi, G., & Golmakani, M. T. (2015). Physical properties of biodegradable films from heat-moisture-treated rice flour and rice starch. Starch / Stärke, 67(11-12), 1053-1060. https://doi.org/10.1002/star.201500102

Naseri, A., Shekarchizadeh, H., & Kadivar, M. (2019). Octenylsuccination of sago starch and investigation of the effect of calcium chloride and ferulic acid on physicochemical and functional properties of the modified starch film. Food Processing and Preservation, 43(3), e13898. https://doi.org/10.1111/jfpp.13898

Panrong, T., Karbowiak, T., & Harnkarnsujarit, N. (2020). Effects of acetylated and octenyl-succinated starch on properties and release of green tea compounded starch/LLDPE blend films. Journal of Food Engineering, 284, 110057. https://doi.org/10.1016/j.jfoodeng.2020.110057

Pérez-Gallardo, A., Bello-Pérez, L. A., García-Almendárez, B., Montejano-Gaitán, G., Barbosa-Cánovas, G., & Regalado, C. (2012). Effect of structural characteristics of modified waxy corn starches on rheological properties, film-forming solutions, and on water vapor permeability, solubility, and opacity of films. Starch/Staerke, 64(1), 27-36. https://doi.org/10.1002/star.201100042

Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. https://doi.org/10.1016/j.foodhyd.2016.09.034

Polnaya, F., Talahatu, J., Haryadi, & Marseno, D. W. (2012). Properties of biodegradable films from hydroxypropyl sago starches. Asian Journal of Food and Agro-Industry, 5(3), 183-192.

Pukkahuta, C., & Varavinit, S. (2007). Structural transformation of sago starch by heat-moisture and osmotic-pressure treatment. Starch/Staerke, 59(12), 624-631. https://doi.org/10.1002/star.200700637

Rai Widarta, I. W., Rukmini, A., Santoso, U., Supriyadi, & Raharjo, S. (2022). Optimization of oil-in-water emulsion capacity and stability of octenyl succinic anhydride-modified porang glucomannan (Amorphophallus muelleri Blume). Heliyon, 8(5), 09523. https://doi.org/10.1016/j.heliyon.2022.e09523

Rong, L., Ji, X., Shen, M., Chen, X., Qi, X., Li, Y., & Xie, J. (2023). Characterization of gallic acid-Chinese yam starch biodegradable film incorporated with chitosan for potential use in pork preservation. Food Research International, 164, 112331. https://doi.org/10.1016/j.foodres.2022.112331

Santoso, B., Sarungallo, Z. L., & Puspita, A. M. (2021). Physicochemical and functional properties of spineless, short-spines, and long-spines sago starch. Biodiversitas, 22(1), 137-143. https://doi.org/10.13057/biodiv/d220119

Segura-Campos, M., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Synthesis and partial characterization of octenylsuccinic starch from Phaseolus lunatus. Food Hydrocolloids, 22(8), 1467-1474. https://doi.org/10.1016/j.foodhyd.2007.09.009

Sharma, M., Singh, A. K., Yadav, D. N., Arora, S., & Vishwakarma, R. K. (2016). Impact of octenyl succinylation on rheological, pasting, thermal and physicochemical properties of pearl millet (Pennisetum typhoides) starch. LWT - Food Science and Technology, 73, 52-59. https://doi.org/10.1016/j.lwt.2016.05.034

Shi, S. S., & He, G. Q. (2012). Process optimization for cassava starch modified by octenyl succinic anhydride. Procedia Engineering, 37, 255-259. https://doi.org/10.1016/j.proeng.2012.04.236

Simsek, S., Ovando-Martinez, M., Marefati, A., Sj, M., & Rayner, M. (2015). Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Food Research International, 75, 41-49. https://doi.org/10.1016/j.foodres.2015.05.034

Singh, G. D., Bawa, A. S., Riar, C. S., & Saxena, D. C. (2009). Influence of heat-moisture treatment and acid modifications on physicochemical, rheological, thermal and morphological characteristics of indian water chestnut (trapa natans) starch and its application in biodegradable films. Starch/Staerke, 61(9), 503-513. https://doi.org/10.1002/star.200900129

Sudlapa, P., & Suwannaporn, P. (2023). Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch – Phenolic complex and control digestibility. Food Hydrocolloids, 136(Part A), 108280. https://doi.org/10.1016/j.foodhyd.2022.108280

Sun, S., Lin, X., Zhao, B., Wang, B., & Guo, Z. (2020). Structural properties of lotus seed starch prepared by octenyl succinic anhydride esterification assisted by high hydrostatic pressure treatment. LWT - Food Science and Technology, 117, 108698. https://doi.org/10.1016/j.lwt.2019.108698

Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905-920. https://doi.org/10.1016/j.carbpol.2012.09.040

Tong, F., Deng, L., Sun, R., & Zhong, G. (2019). Effect of octenyl succinic anhydride starch ester by semi-dry method with vacuum-microwave assistant. International Journal of Biological Macromolecules, 141, 1128-1136. https://doi.org/10.1016/j.ijbiomac.2019.08.157

Viana, E. B. M., Oliveira, N. L., Ribeiro, J. S., Almeida, M. F., Souza, C. C. E., Resende, J. V., Santos, L. S., & Veloso, C. M. (2022). Development of starch-based bioplastics of green plantain banana (Musa paradisiaca L.) modified with heat-moisture treatment (HMT). Food Packaging and Shelf Life, 31, 100776. https://doi.org/10.1016/j.fpsl.2021.100776

Wang, H., Liu, Y., Chen, L., Li, X., Wang, J., & Xie, F. (2018). Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry, 242, 323-329. https://doi.org/10.1016/j.foodchem.2017.09.014

Wang, P. P., Luo, Z. G., Chun-Chen, Xiong-Fu, & Tamer, T. M. (2020). Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch. Carbohydrate Polymers, 228, 115389. https://doi.org/10.1016/j.carbpol.2019.115389

Wang, Q., Li, L., Liu, C., & Zheng, X. (2022). Heat-moisture modified blue wheat starch: Physicochemical properties modulated by its multi-scale structure. Food Chemistry, 386, 132771. https://doi.org/10.1016/j.foodchem.2022.132771

Xie, X., Qi, L., Xu, C., Shen, Y., Wang, H., & Zhang, H. (2020). Understanding how the cooking methods affected structures and digestibility of native and heat-moisture treated rice starches. Journal of Cereal Science, 95, 103085. https://doi.org/10.1016/j.jcs.2020.103085

Zainal Abiddin, N. F., Yusoff, A., & Ahmad, N. (2018). Effect of octenylsuccinylation on physicochemical, thermal, morphological and stability of octenyl succinic anhydride (OSA) modified sago starch. Food Hydrocolloids, 75, 138-146. https://doi.org/10.1016/j.foodhyd.2017.09.003

Zavareze, E. D. R., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317-328. https://doi.org/10.1016/j.carbpol.2010.08.064

Zhang, J., Ran, C., Jiang, X., & Dou, J. (2021). Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch. LWT - Food Science and Technology, 152, 112320. https://doi.org/10.1016/j.lwt.2021.112320

Zhang, Z., Zhao, S., & Xiong, S. (2013). Molecular properties of octenyl succinic esters of mechanically activated Indica rice starch. Starch/Starke, 65(5-6), 453-460. https://doi.org/10.1002/star.201200187

Zhou, J., Ren, L., Tong, J., & Ma, Y. (2009). Effect of Surface Esterification with Octenyl Succinic Anhydride on Hydrophilicity of Corn Starch Films. Journal of Applied Polymer Science, 114(2), 940-947. https://doi.org/10.1002/app.30709

Downloads

Publicado

2023-07-18

Como Citar

DEWI, A. M. P., SANTOSO, U., PRANOTO, Y., & MARSENO, D. W. (2023). Optimizing reaction condition of octenyl succinic anhydride on heat-moisture-treated sago starch and its application for biodegradable film. Food Science and Technology, 43. https://doi.org/10.5327/fst.17523

Edição

Seção

Artigos Originais