
Food Sci. Technol, Campinas, 43, e114222, 2023 1

Food Science and Technology

OI: D https://doi.org/10.5327/fst.114222

ISSN 0101-2061 (Print)
ISSN 1678-457X (Online)

Original Article

1 Introduction
The World Health Organization defines obesity as a non-

communicable disease that requires long-term and active 
treatment; moreover, it is a chronic condition that poses a 
serious threat to human health in the 21st century (King et al., 
2021). There are different weight-management techniques to 
treat obesity, including exercise, dietary control, surgery, and 
medication (Salari  et  al., 2021). Among these, medication is 
widely utilized along with exercise, but anti-obesity medicines 
are usually accompanied by adverse effects and they vary in 
terms of effectiveness (Janakiraman et al., 2022). Xenical, a Food 
and Drug Administration-approved anti-obesity medicine, is a 
triglyceride analog that binds to the active site of triglyceride 
hydrolase to limit the formation of enzyme–substrate complexes 
(Zhang et al., 2020). However, frequent bowel movements, oily 
evacuation, oily rectal leakage, steatorrhea, and cardiovascular 
diseases have been reported as the common adverse effects of 
this medication. Overcoming these adverse effects is critical for 
the development of anti-obesity medicines, and various studies 
are being conducted to replace semtraditional drugs such as 
Xenical, Dexatrim, and Redux (Yildiz et al., 2021).

Obesity is induced by a combination of social, environmental, 
and hereditary features including cultural milieus, living 
environment, and eating habits (Santos et al., 2019). Additionally 
environmental factors, including ultraviolet (UV) radiation, air 

pollution, and chemical exposure, increase the risk of obesity 
by interfering with the obesity-related genes (Golden & Kessler, 
2020). Numerous studies have found that obesity is induced by 
an imbalance in the bodily metabolic processes due to damaged 
proteins, lipids, and genes caused by reactive oxygen species 
(ROS). Remarkably, ROS production is triggered by stress, UV 
radiation, smoking, pollution, and an unhealthy diet. The ROS 
generated during biochemical reactions such as respiration and 
photosynthesis in mitochondria are eliminated by antioxidant 
enzymes, including glutathione peroxidase, catalase, and 
superoxide dismutase, which are present as intracellular defense 
systems or antioxidants in food, such as vitamins, tocopherol, 
catechin, retinol, resveratrol, and glutathione (Ba et al., 2022). 
Recent studies have reported a correlation between obesity and 
antioxidant levels. Specifically, the body mass index, which is 
a measure of obesity, reportedly decreases considerably as the 
levels of the main antioxidants increased in the blood of obese 
patients (Bonakdar et al., 2019).

In patients with obesity, the increase in adipocytes during lipid 
biosynthesis via preadipocyte differentiation causes hypertrophy and 
hyperplasia (White & Ravussin, 2019). When this differentiation 
is induced, cell proliferation halts due to the cell cycle arrest, and 
the proliferation of mature adipocytes, known as adipogenesis, 
occurs (Lee et al., 2018). It has been established that the suppression 
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of preadipocyte development is a very successful strategy to 
prevent and treat obesity (Khandagale et al., 2022). The processes 
of preadipocyte initiation and differentiation involve numerous 
signaling pathways as well as multiple transcription factors and 
genes, such as isobutylmethylxanthine (IBMX), dexamethasone 
(DEX), and insulin (Choi  et  al., 2021). Various studies have 
demonstrated that cyclic adenosine monophosphate (cAMP) and 
the sterol regulatory element-binding protein-1c (SREBP-1c) are 
important transcription factors for lipid and glucose metabolism 
gene regulation. When the level of cAMP is increased by DEX 
during the early stage of differentiation, SREBP-1c expression 
is induced and the peroxisome proliferator activated receptor-γ 
(PPAR-γ) and CCAAT enhancer binding protein-α (CEBP-α) are 
mutually expressed. This promotes preadipocytes with fatty acid 
synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1), enzymes 
involved in the synthesis of triglycerides from acetyl-CoA and 
malonyl-CoA (Sordi et al., 2021).

Centella asiatica is an herbaceous perennial plant of the 
Apiaceae family distributed in wetlands in Brasil, Uruguay, 
Portugal, and Southeast Asia (Kant  et  al., 2019). It contains 
therapeutic compounds such as madecassoside, madecassic 
acid, and asiaticoside, which are reported to have wound-
healing, anti-inflammatory, antioxidant, and anticancer effects 
(Tripathy et al., 2022). However, studies on the inhibition of 
preadipocyte differentiation and anti-obesity mechanisms of 
C. asiatica extract have not been widely conducted. Therefore, 
in this study, the antioxidant and lipase inhibiting activities of 
the C. asiatica hot-water extract (CHE) were investigated to 
evaluate the plant’s anti-obesity effect. Furthermore, to elucidate 
the anti-obesity mechanism of the extract, the effects on the 
mRNA expressions of PPAR-γ, CEBP-α, FAS, and SCD1, which 
are major genes involved in preadipocyte differentiation were 
evaluated. The purpose of this study was to demonstrate the CHE 
treatment significantly decreased both PPAR-γ and C/EBP-α 
expressions, thereby affecting the expression of FAS and SCD1, 
sub-factor in the adipogenesis pathways.

2 Materials and methods
2.1 Preparation of CHE

C. asiatica was purchased from a local farm in Hongcheon 
(Gangwon-do, Korea) in 2021 and dried at 60 °C for 24 h in a 
forced convection oven (VS-1202D4N, Vision Bionex, Buchoen, 
Korea). Dried C. asiatica was pulverized using a food processor 
(HMF-3000S, Hanil, Seoul, Korea) and then passed through a 
25 mesh sieve to collect particles less than 0.71 mm. The extraction 
was performed at 60 °C for 30 min using an ultrasound extractor 
(SD-250H, Mujigae Co., Seoul, Korea) after adding 10 mL of 
distilled water to 1.0 g of C. asiatica. Then, CHE was centrifuged 
at 2,800 g for 10 min (Labogene 1236R, Gyrozen Co., Daejeon, 
Korea) and stored at –21 °C.

2.2 Total Polyphenol Content (TPC) assay

TPC was determined by the modified Folin-Ciocalteu 
method (Semeniuc et al., 2018). 0.14 mL of CHE was mixed with 
0.7 mL of 0.2 N Folin-Ciocalteu reagent (Sigma-Aldrich, St Louis, 
MO., USA). After 8 min, 0.56 mL of 7.5% Na2CO3 solution was 

added to the mixture. The absorbance was measured at 765 nm 
by a UV-vis spectrophotometer (Optizen 2120UV, Mecasys 
Co., Daejeon, Korea) after 60 min of reaction. The TPC was 
calculated on the basis of the calibration curve using gallic acid 
(Sigma-Aldrich, St Louis, MO., USA) and expressed as mg gallic 
acid equivalents (GAE)/g of dried matter (DM).

2.3 Radical Scavenging Activity (RSA) assay

RSA was assayed using the method by Yeom et al. (2022). 
0.01 mM of DPPH (Sigma-Aldrich, St Louis, MO., USA) in 
methanol was prepared and 0.25 mL of CHE was added to 
1.25 mL of DPPH solution. Then the reaction was carried out 
for 20 min in the dark condition at 25 °C. The absorbance of 
reactant was measured at 517 nm and RSA was calculated 
according to the below Equation 1.

( ) Abs (sample)RSA %  = 1 -  × 100
Abs (control)

  
 
  

 (1)

2.4 Lipase Activity Inhibition (LAI) assay

Measurement of LAI was performed according to the 
modified method by Gam  et  al. (2021). Reaction mixture 
consisted of 0.1 mL of CHE, 0.2 mL of substrate solution (10 mM 
of p-nitrophenyl butyrate), and 0.2 mL of lipase. Enzymatic 
reactions were allowed to proceed at 37 °C for 30 min. LAI was 
determined by measuring the hydrolysis of p-nitrophenyl butyrate 
to p-nitrophenol at 405 nm. LAI was calculated according to 
the below Equation 2.

( ) Abs (sample)LAI %  = 1 -  × 100
Abs (control)

  
 
  

 (2)

2.5 Measurement of preadipocyte differentiation

Media and reagents used for cell culture and differentiation 
include Dulbecco’s modified eagle’s medium (DMEM), new born 
calf serum (NBCS), fetal bovine serum (FBS), and 0.05% trypsin-
EDTA were purchased from Thermo Fisher Sci. (Waltham, MA., 
USA). Preadipocyte with the inoculum density of 2.5 × 104 cells/
mL was cultured in DMEM supplemented with 10% NBCS, 1% 
penicillin, and MDI (0.5 mM IBMX, 1.0 mM DEX, and 1.0 μg/
mL insulin), and cultured in CO2 incubator (MCO-18AIC, 
Sanyo, Osaka, Japan) set at 37 °C with 5.0% CO2. After 48 h, 
cells were fed with DMEM containing 10% FBS and 10 μg/mL 
insulin and cultured for an additional 48 h. Subsequently, the 
media was replaced with DMEM containing 10% FBS every 48 h.

2.6 Cell viability assay

The effect of CHE on the cell viability was determined 
using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT) assay (Hong et al., 2022). 3T3-L1 preadipocyte 
was cultured in 96-well plate and treated with concentration of 
0.0 ~ 4.0 mg/mL after 24 h of inoculation. After 48 h of CHE 
treatment, 0.1 mL of MTT solution (0.25 mg/mL) was added 
and incubated at 37 °C for 4 h. Thereafter, the supernatant was 
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completely removed, and 0.1 mL of DMSO was added to dissolve 
the formazan crystal. Absorbance was read at 540 nm using a 
microplate reader (AMR-100, Allsheng, Seoul, Korea) and cell 
viability was calculated according to the following Equation 3.

( ) Abs (sample)Cell viability %  = 1 -  × 100
Abs (control)

  
 
  

 (3)

2.7 Lipid accumulation assay

Lipid accumulation of differentiated 3T3-L1 preadipocyte 
was measured by oil red O staining. The cells were washed 
with phosphate-buffered saline (PBS) and fixed with 10% 
formaldehyde solution for 30 min. Then, the cells were stained 
with oil red O solution for 60 min and washed with distilled 
water. The stained lipids were eluted with 99.5% isopropanol 
and measured using an UV-vis spectrophotometer at 497 nm 
by the following Equation 4.

( ) Abs (sample)Lipid accumulation %  = 1 -  × 100
Abs (control)

  
 
  

 (4)

2.8 Measurement of anti-obesity gene expression

RT-PCR was performed to determine the mRNA level of 
the CEBP-α, PPAR-γ, FAS, and SCD1 anti-obesity genes in 3T3-
L1 preadipocytes. Cells were cultured at an inoculum density of 
3 × 105 cells/mL in a T-25 cell culture flask (SPL Life Sci., Seoul, 
Korea). After harvesting the cells, the total RNA was extracted 
using the AccuPrep® universal RNA extraction kit (Bioneer 
Co., Daejeon, Korea) and was reverse transcribed into cDNA 
using the amfiRivert cDNA synthesis platinum master mix 
(GenDEPOT Co., Greenville, SC., USA). Subsequently, cDNA 
was amplified using specific primers for the CEBP-α, PPAR-γ, 
FAS, and SCD1 genes (Table 1). The PCR conditions were set 
as follows: initial denaturation at 94 °C for 5 min, followed by 
30 cycles at 95 °C for 5 sec, 60 °C for 30 sec (CEBP-α), 59 °C for 
30 sec (PPAR-γ), 54 °C for 60 sec (FAS and SCD1), and 72 °C for 
60 sec. Each PCR product was subjected to electrophoresis on a 
1.5% agarose gel and the intensity of bands was visualized using 
the Gel DocTM XR + system (Bio-Rad Co., Richmond, CA., USA).

2.9 Statistical analysis

Data were expressed as the mean ± standard deviation (SD) 
for all experiments, and probabilities (p) of chance difference 
between groups were calculated according to Student’s t-test. 

A statistically significant test means that the test hypothesis is 
false or should be rejected and the criteria were set at p < 0.05.

3 Results and discussion
3.1 Effect of the CHE on TPC and RSA

ROS are normal cellular metabolic byproduct of living 
cells and are readily eliminated by catalase and peroxidase to 
maintain homeostasis (He et al., 2021). However, under intense 
stress conditions, cells produce excessive ROS above the enzyme-
induced homeostasis levels, resulting in lipid metabolic disorder, 
protein denaturation, and DNA damage, which may lead to 
obesity (Tam et al., 2020). Therefore, current research is the field 
is increasingly focusing on discovering natural antioxidants and 
developing an efficient extraction technology. In this study, the 
CHE was obtained using the ultrasound-assisted extraction (UAE) 
method to produce bioactive compounds with high antioxidant 
activity. The extraction was carried out at 60 °C and for 30 min 
based on the method reported by Ha et al. (2010). Under these 
conditions, the values of TPC and RSA, which are markers 
of antioxidant activity, were 14.4 ± 0.14 mg GAE/g DM and 
82.6%, respectively, 1.3 times higher than the values reported 
by Shin et al., in a previous extraction of C. asiatica (Shin et al., 
2020). These results indicated that polyphenol extraction via 
UAE produced strong antioxidant compounds and is a useful 
method to obtain extracts from natural sources.

Reactive oxygen species (ROS) could lead to the dysfunction 
of mitochondria by inhibiting the aerobic respiration process 
and, resulting in reduced energy expenditure in adipocytes 
(Wang  et  al., 2022). In addition, in hypoxic conditions, 
reactive nitrogen species (RNS) may also be produced during 
the respiratory chain reaction, and RNS may further lead to 
the production of reactive species such as reactive aldehydes, 
malondialdehyde, and 4-hydroxynonenal (Li  et  al., 2022). 
Excessive levels of ROS and RNS can cause damage to the 
adipocyte cellular structure and functions which may induce 
obesity and metabolic syndrome. Then, excessive production 
of ROS in adipocytes and adipose tissues may be deleterious 
if not removed quickly. Polyphenols can interact with ROS 
& RNS and thus terminate chain reaction before damage to 
adipocytes and adipose tissues (Colitti et al., 2019).

3.2 Effect of the CHE on LAI

Over 90% of dietary fat is composed of triglycerides and is 
micellized by pancreatic lipase, which hydrolyzes them into fatty 

Table 1. Primer sequences used in reverse transcription-polymerase chain reaction (RT-PCR) of major genes related to anti-obesity.

Obesity-related genes Forward primers (5’-3’) Reverse primers (5’-3’)
1)PPAR-γ ATT CTG GCC CAC CAA CTT CGG TAA GAC CGG GTG GTT GAA GCC
2)CEBP-α GGT TTA GGG ATG TTT GGG TTT T CCA AAT CCC TAC AAA CCC AAA A

3)FAS CCC TGA AAT CCC AGC ACT TC GGG ACT CCA TTT TCG GCA AG
4)SCD1 CCG TGA AAT CCC AGC ACT TC GGC ACT TTA GGG TCG GCA AG
β-actin AAC GAC TAG GTG GAG ACG GT TTG CTG ATC CAC ATC TGC TG

1)PPAR-γ: peroxisome proliferator activated receptor-γ. 2)CEBP-α: CCAAT enhancer binding protein-α. 3)FAS: fatty acid synthase. 4)SCD1: stearoyl-CoA desaturase 1.
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acids and monoglycerides, facilitating intestinal absorption and 
leading to obesity through the increased triglyceride metabolism 
(Zuin  et  al., 2022). Consequently, lowering lipase activity is 
expected to have an anti-obesity effect, resulting in a reduced 
generation of fatty acids through the inhibition of triglyceride 
hydrolysis. Therefore, for selection of effective anti-obesity 
medication candidates, evaluating the inhibition of lipase activity 
is an effective strategy to prevent lipid accumulation through 
the decrease in fatty acid absorption.

LAI is used as an important indicator to evaluate anti-
obesity effects and it reached 68.1% in this experiment, which 
was 3.1 times higher than the value obtained for the hot-water 
extract of Aceriphyllum rossii leaves (21.9%), indicating that 
C. asiatica extract obtained via ultrasound can be used as an 
excellent anti-obesity agent to inhibit triglyceride hydrolysis 
(Lim et al., 2010). According to Gam et al., the mechanism 
underlying the anti-obesity effect of peanut shell extracts is due 
to the presence of polyphenol acting as an enzyme inhibitor 
for lipase, which in turn inhibits triglyceride hydrolysis and 
absorption (Gam et al., 2021). The lipase inhibitor, Orlistat is 
a commercially available medicine used to treat obesity that 
has a structure similar to that of triglycerides and acts as an 

inhibitor of triglyceride hydrolysis by competing with lipase 
(Shirai et al., 2019). Similar to Orlistat, the CHE’s polyphenols 
are believed to exert anti-obesity effects by decreasing lipase 
activity through the competitive inhibition of triglycerides. 
Additional experiments need to be conducted to confirm 
the decrease in preadipocyte development following CHE 
treatment, as well as the effect of suppressing anti-obesity gene 
expressions to, validate the anti-obesity effect of the extract.

3.3 Effect of the CHE on cell cytotoxicity

A cytotoxicity test was conducted to evaluate the effect of the 
CHE on adipocyte differentiation and triglyceride accumulation 
in 3T3-L1 cells (Figure 1). When preadipocytes were treated 
with the extract at concentrations from 0.0 to 4.0 mg/mL, cell 
viability significantly decreased as the concentration increased 
above 2.0 mg/mL (p > 0.05). Conversely, at a concentration 
of 1.0 mg/mL, cell viability was 92.8%, verifying that there 
was no inhibitory effect on the growth of preadipocytes in the 
treatments at or below 1.0 mg/mL. The CHE was shown to be 
less cytotoxic than conventional natural products, confirming 
that it is safer to use as a preadipocyte inhibitor. Therefore, in 
subsequent experiments, to evaluate the CHE’s ability to inhibit 
preadipocyte differentiation and anti-obesity gene expression, 
the maximum concentration of the extract at which cell growth 
was not inhibited was set at 1.0 mg/mL. A previous study by 
Jeon et al., where adipocytes were treated with 1.0 mg/mL of 
Plantago asiatica extract, reported a cell survival rate of 18.4%, 
which is lower than that obtained in the present study. Moreover, 
the extract was considered as a highly safe natural material due 
to its higher non-toxicity (Jeon et al., 2014).

3.4 Effect of the CHE on lipid accumulation

In this study, oil red O staining was performed to evaluate the 
effect of the CHE on preadipocyte differentiation. The cytoplasmic 
lipids accumulated in adipocytes are triglycerides surrounded 
by a monolayer of phospholipids. These lipid droplets are 
considered as dynamic and regulated intracellular organelles 

Figure 1. Effect of the CHE (0.0 ~ 4.0 mg/mL) and Non treated group 
(N.T.) on cell viability in 3T3-L1 preadipocytes. Bars represent the 
mean ± standard deviation of three independent experiments and 
asterisks indicate significant differences from the control (*p < 0.05).

Figure 2. Lipid accumulation of CHE in 3T3-L1 preadipocytes exposed to methylisobutylxanthine, dexamethasone, insulin (MDI) medium Lipid 
droplets in adipocytes were stained with oil red O and were observed under a ×64 magnification microscope. Bars marked with asterisks indicate 
significant differences different from the control (*p < 0.05).
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that play an active role in fatty acid storage and mobilization 
(Pereira‐Dutra et al., 2019). Triglycerides are selectively stained 
with oil red O, whereas phospholipids and free fatty acids remain 
unstained; therefore, oil red O staining allows to compare the 
degree of preadipocyte differentiation (Cheng et al., 2020).

As illustrated in Figure 2, the CHE treatment reduced lipid 
accumulation in a concentration-dependent manner specifically, 
by 1.26 times at 1.0 mg/mL, which is the concentration with 
no inhibitory effects on cell growth. This is consistent with the 
results reported in Kang et al. which indicated that adipocyte 
accumulation decreased when preadipocytes were treated with 
bellflower and turmeric extracts at a concentration ≤ 1.0 mg/
mL (Kang et al., 2015).

Recent research showed that plant-derived polyphenols 
exert anti-obesity effects on preadipocyte differentiation and 
lipid accumulation by regulating the expression of CEBP-α 
and PPAR-γ, which are early transcription factors involved in 
preadipocyte differentiation. Considering this, it is hypothesized 
that polyphenols in the CHE contribute to inhibiting preadipocyte 
differentiation by regulating key adipogenesis genes (Stefania et al., 
2021). Additionally, to confirm the mechanism underlying the 
extract’s anti-obesity effect, it was necessary to evaluate the 
expression of major genes involved in preadipocyte differentiation.

3.5 Effect of CHE on anti-obesity gene expression

During preadipocyte differentiation, the transcription 
factors of the CCAAT enhancer binding protein (CEBP) promote 
adipocyte differentiation, while CEBP-α a key regulator of 
the glucose and lipid metabolisms in the liver is expressed by 
hormones such as IBMX, DEX, and insulin (Lin et al., 2021). 
Subsequently, PPAR-γ, a major gene regulating preadipocyte 
differentiation is expressed and the cell cycle is arrested again by 
the adipocyte induction complex (Kim et al., 2020). Furthermore, 
the interaction between CEBP-α and PPAR-γ induces the 
expression of SCD1 and FAS, the enzymes involved in adipocyte 
differentiation and lipid synthesis, thus that intracellular lipids 

are accumulated and preadipocyte differentiation is completed 
(Gouthamchandra et al., 2019). It has been shown that reducing 
the excessive accumulation of triglycerides, which is the cause 
of obesity, is useful to treat this condition and can be achieved 
by modulating the expression of main factors involved in lipid 
precursor differentiation.

The present study, evaluated of the effect of the CHE on the 
mRNA expressions of CEBP-α, PPAR-γ, FAS, and SCD1. As shown 
in Figure 3, these were inhibited during the 1.0 mg/mL treatment 
by 1.52, 1.81, 1.13, and 1.18 times, respectively, compared to 
the control group. The inhibition of CEBP-α expression in 
preadipocytes via CHE treatment was 2.2 times higher than 
that reported in Lee et al., where it was demonstrated that the 
inhibition of preadipocyte differentiation produced anti-obesity 
effects (Hwang et al., 2014). Additionally, Wang et al. (1995) 
confirmed that lipid accumulation did not occur when CEBP-α 
was eliminated from the in vivo model, further demonstrating 
that the inhibition of this gene is essential to obtain the anti-
obesity effect as it upregulates preadipocyte differentiation 
(Wang et al., 1995). According to previous reports, CEBP-α is 
essential in the differentiation of preadipocyte through interaction 
with PPAR-γ. The present study demonstrates that the CHE 
treatment significantly inhibited both the CEBP-α and PPAR-γ 
expressions, thereby affecting the expression of FAS, a sub-factor 
of CEBP-α and PRAR-γ. Also, the extract inhibited the expressions 
of CEBP-α, PPAR-γ, FAS, and SCD1 genes, which are involved 
in preadipocyte differentiation and it was confirmed that the 
accumulation of triglycerides in adipocytes could be inhibited 
by effectively suppressing CEBP-α and PRAR-γ.

4 Conclusion
This study measured the effect of the CHE on TPC, RSA, 

and LAI to confirm its antioxidant and anti-obesity effects. 
Additionally, the expressions of the CEBP-α, PPAR-γ, FAS, and 
SCD1 genes, which are essential for preadipocyte differentiation, 
were assessed to further confirm the mechanism underlying the 

Figure 3. Effect of the CHE on CEBP-α, PPAR-γ, FAS, and SCD1 mRNA expression levels in 3T3-L1 preadipocytes. Values are expressed as 
mean ± standard deviation of three experiments. Bars marked with asterisks are significantly different from the control (*p < 0.05).
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anti-obesity effect. The CHE-treated TPC, RSA, and LAI showed 
values of 14.4 mg GAE/g DM, 82.6%, and 68.1%, respectively. 
Therefore, the extract could be used as an anti-obesity substance 
that competitively hinders the binding of triglycerides to lipase 
and removes ROS, which is one of the causes of obesity, via its 
antioxidant activity. During the treatment of preadipocytes 
at ≤ 1.0 mg/mL, the adipocyte formation was reduced in a 
concentration-dependent manner, and the anti-obesity effect 
was confirmed by the reduction of adipocyte accumulation. 
Additionally, in the treatment group, the expressions of the main 
anti-obesity genes CEBP-α, PPAR-γ, FAS, and SCD1, decreased 
significantly decreased compared to those in the control group. 
This research indicated that CHE with high TPC can be used as 
a natural antioxidant and anti-obesity agent, and it is expected 
to effectively inhibit the expression of CEBP-α and PRAR-γ, 
which is the major gene involved in the anti-obesity effect. Thus, 
CHE is predicted to have a high industrial application value as 
a functional food and pharmaceutical material.
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