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Abstract
This study focuses on optimizing mango harvesting and minimizing waste by using a handheld near-infrared (NIR) 
spectrophotometer to develop predictive models for assessing the quality of ‘Palmer’ and ‘Tommy Atkins’ mangoes. It aims to 
enhance mechanical resistance and reduce post-harvest losses. The study created prediction models for key quality attributes: 
soluble solids (SS), titratable acidity (TA), and dry matter (DM). For ‘Palmer’ mangoes, the first derivative of Savitzky–Golay 
(SG1) yielded the best SS predictions (the coefficient of determination for prediction [R²P] = 0.69, the square root of the mean 
error of prediction [RMSEP] = 1.56%, and the standard deviation ratio of prediction [SDRP] = 1.80). For ‘Tommy Atkins’ 
mangoes, the second derivative of Savitzky–Golay (SG2) was more effective (R²P = 0.72, RMSEP = 2.43%, and SDRP = 1.85). 
TA prediction models showed that SG2 was more effective for ‘Palmer’ (R²P = 0.56, RMSEP = 0.14%, and SDRP = 1.48), while 
multiplicative signal correction pre-treatment worked better for ‘Tommy Atkins’ (R²P = 0.59, RMSEP = 0.13%, and SDRP = 
1.55). For DM predictions, SG1 was optimal for ‘Palmer’ (R²P = 0.83, RMSEP = 0.95, and SDRP = 2.44) and SG2 for ‘Tommy 
Atkins’ (R²P = 0.79, RMSEP = 1.36, and SDRP = 2.00). In conclusion, the handheld NIR spectrophotometer shows promise for 
accurate quality assessments in the mango production chain, enabling better decision-making on harvest timing and reducing 
post-harvest losses.

Keywords: Mangifera indica L; soluble solids; titratable acidity; dry matter; short-wave near-infrared region; near-infrared 
spectroscopy. 

Practical Application: Near-infrared technology optimizes mango harvest and reduces losses through precise assessments.

Investigation of the internal quality of ‘Palmer’ 
and ‘Tommy Atkins’ mangoes by near-infrared spectroscopy
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1 INTRODUCTION
Mango (Mangifera indica L) is one of the most widely cul-

tivated tropical fruits globally, known for its vibrant color, re-
freshing taste, and nutritional and therapeutic values. In 2021, 
India was the largest producer of mangoes, followed by China, 
Indonesia, Pakistan, Mexico, and Brazil (Lauricella et al., 2017; 
Maldonado-Celis et al., 2019; Zhang et al., 2022). That same 
year, mango became Brazil’s top fruit export, with over 272 
million tons shipped, generating more than US$ 1.218 billion 
in revenue (MAPA, 2023).

Consumers worldwide often choose fruits based on cri-
teria such as skin integrity, color, and pulp firmness, which 
also apply to mango selection for its appealing taste. A study 
on the relationship between the dry matter (DM) content and 
high consumer acceptance scores of ripe ‘Palmer’ and ‘Tommy 
Atkins’ mangoes from Brazilian orchards found acceptance 
scores of 7–9 (“like moderately”) for minimum DM values of 

137 and 144 g kg-1, respectively (Freitas et al., 2022). In Italy, 
research showed that 80% of evaluators rated mangoes harvest-
ed after 119 days from full flowering as “good” or “excellent,” 
correlating with SS and DM contents exceeding 12% each 
(Gianguzzi et al., 2021).

Harvest time plays a crucial role in determining the internal 
quality of mangoes intended for industry or consumer markets. 
As a climacteric fruit, mangoes can be harvested when physi-
ologically mature and stored under optimal conditions to slow 
ripening, depending on their final destination (Yahia, 2019). 
Harvest decisions are based on field assessments (such as peel 
color and texture) combined with destructive physicochemical 
analyses (Lobo & Sidhu, 2017). The key indicators of mango 
maturity include soluble solids (SS), DM, and titratable acidity 
(TA) contents (Subedi et al., 2007). However, the most reliable 
parameter for determining harvest time remains the full flow-
ering period (126–133 days) (Gianguzzi et al., 2021).
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Near-infrared (NIR) spectroscopy is a more precise and 
consistent method for estimating fruit characteristics than re-
lying on flowering time. Flowering can be irregular, with mul-
tiple flowering events in the same orchard, causing variations 
that complicate uniform fruit analysis. Environmental factors 
and cultivation practices further affect flowering regularity 
and intensity. In contrast, NIR spectroscopy directly measures 
properties such as SS and TA, offering precise and repeatable 
assessments without the variability of flowering time. This an-
alytical technique allows for immediate and direct fruit quality 
monitoring, making it a more reliable approach for agricultural 
evaluations (Mishra & Woltering, 2023; Nicolai et al., 2007).

Advancements in computational technology have enabled 
non-destructive methods to accurately determine the optimal 
harvest time for fruits. NIR spectroscopy stands out as a rapid, 
non-destructive, low-cost analytical technique that requires 
minimal sample preparation and no reagents. It has shown 
promise in assessing harvest indicators for various fruits, includ-
ing bananas (Subedi & Walsh, 2011), cherries (Li et al., 2018), 
apples (Fan et al., 2020), pears (Yu & Yao, 2022), tomatoes (Brito 
et al., 2022), and mangoes (Anderson et al., 2020; Freitas et al., 
2022; Munawar et al., 2022; Shah et al., 2021). This method is 
particularly valuable due to the absence of a universal maturity 
pattern among mango cultivars, which varies with different 
growing conditions (Yahia, 2019).

Despite the development of accurate calibration and predic-
tion models using NIR spectroscopy for ‘Palmer’ (Santos Neto 
et al., 2017) and ‘Tommy Atkins’ (Marques et al., 2016) mangoes 
in Brazil, harvest indicators can vary regionally. To address 
future demands for regional calibration models, the internal 
quality of ‘Tommy Atkins’ and ‘Palmer’ mangoes was studied 
using chemometric models. These models, applied through NIR 
spectroscopy, were developed to predict key quality indicators 
such as SS, TA, and DM, ensuring accurate assessments tailored 
to different Brazilian regions.

2 MATERIAL AND METHODS

2.1 Materials

‘Palmer’ and ‘Tommy Atkins’ mangoes (M. indica) were har-
vested from farms located in Campestre (16°44’17” latitude South, 
49°41’48” longitude West, 693 m altitude), Silvânia (16°38’35” 
latitude South, 48°36’15” longitude West, 877 m altitude), and 
Cristalina (16°46’4” latitude South, 47°36’47” longitude West, 1237 
m altitude), Goiás, Brazil. Employing the size and shape of com-
mercial fruits as a reference, the fruit was harvested at randomized 
developmental stages and subsequently transported in plastic 
boxes at an ambient temperature. The selection criteria (n’Palmer’ = 
256, and n‘Tommy Atkins’ = 207) were based on surface quality attributes 
(absence of physical damage and diseases), visually classified for 
peel color similarity, and stored at 25°C until another evaluation. 

2.2 Analytical methodology

The mangoes underwent destructive (reference) and 
non-destructive techniques, evaluating SS, TA, and DM. Two 

locations were taken from each fruit (Figure 1) from both sides 
of the equatorial region, equidistant from proximal and distal 
ends (Subedi et al., 2007). 

2.3 Spectral achievement

NIR spectra were collected using the F-750 portable NIR 
spectrometer (Felix Instruments, Washington, USA) within 
a wavelength range of 250–1100 nm, employing interactance 
geometry with a resolution of 3 nm. For each marked location, 
one spectrum was obtained, in the equatorial region, equidistant 
proximally and distally (Figure 1). Each spectrum was the result 
of an average of four scans to enhance the signal-to-noise ratio. 
The resulting spectra were then split between training and test 
sets for subsequent analysis (Subedi et al., 2007). 

2.4 Reference evaluations

2.4.1 Soluble solids content

The SS content was determined using a digital refractome-
ter (Reichert Brix/RI-Check, NY, USA) (met. 932.12) (AOAC, 
1997). After peel removal, the mango pulp was macerated, and 
juice was obtained through gauze, with results expressed in 
percentage (%).

2.4.2 Titratable acidity content

The TA content was obtained through volumetric titra-
tion (met. 942.15) (AOAC, 1997). Subsequently, 5 g of the 
pulp juice and 50 mL of distilled water were mixed under 
magnetic stirring. Sodium hydroxide (100 mM) was titrated 
under constant agitation using 1% phenolphthalein alcoholic 
solution as an indicator, with results expressed in percentage 
of citric acid. 

2.4.3 Dry matter content

The DM was determined via gravimetric methodology. 
After removing the 1–2-mm-thick mango peel, a cylindrical 
sample portion of 27 mm in diameter and 10 mm in depth 
was subjected to a forced air circulation oven at 105°C until 

Figure 1. Schematic diagram of the marked places for near-infrared 
spectral and reference analysis in the sampling of mangoes.
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reaching a constant weight (Subedi et  al., 2007). The results 
were expressed as percentage (%).

2.5 Chemometrics

The Unscrambler® software version 10.0.3 (CAMO, 
Oslo, Norway) was employed for the analysis of spectral 
data and reference values. The data, with each sample rep-
resenting an individual fruit, underwent principal compo-
nent analysis (PCA) to reduce dimensionality and identify 
key variables for fruit discrimination. Following this, the 
Kennard–Stone algorithm was applied to divide the fruits 
into calibration (two-thirds of the samples) and prediction 
(one-third of the samples) sets. The division was carefully 
conducted to ensure that fruits included in the calibration 
set were distinct from those in the prediction set, thereby 
preventing any overlap between the two sets. This rigorous 
approach guarantees that the calibration and prediction 
sets are independent, enhancing the robustness and validity 
of the statistical analysis. The spectra were pre-processed 
using multiplicative signal correction (MSC) and the sec-
ond polynomial order of the first and second derivatives of 
Savitzky–Golay (SG1 and SG2, respectively) with smoothing 
windows of either 5 points (2+2) or 7 points (5+5). Calibra-
tion models were developed utilizing partial least squares 
(PLS) regression with the non-linear iterative partial least 
squares algorithm. Cross-validation involved five segments 
with random sample selection. 

Models’ performance was evaluated through the square 
root of the mean error of calibration (RMSEC), the square root 
of the mean error of cross-validation (RMSEcv), the square root 
of the mean error of prediction (RMSEP), the standard error of 
prediction (SEP), the coefficient of determination for calibra-
tion (R²c), the coefficient of determination for cross-validation 
(R²CV), the coefficient of determination for prediction (R²P), and 
standard deviation ratio (SDR) (Golic & Walsh, 2006; Toscano 
et al., 2017).

3 RESULTS AND DISCUSSION

3.1 Reference evaluations: soluble solids, titratable acidity, 
and dry matter

Table 1 shows the calibration sets for ‘Palmer’ and ‘Tommy 
Atkins’ mangoes, displaying average SS values of 11.17 and 
13.59%, respectively. The SS content of the Palmer cultivar 
ranged from 5.3 to 19.6%, a range consistent with findings 
from researchers using ‘Palmer’ mangoes from São Paulo, Bra-
zil, via NIR spectroscopy (Santos Neto et al., 2017). The Tom-
my Atkins cultivar (Table 1) showed a range of SS between 4.3 
and 22.78%, with variation values akin to those documented 
from ‘Tommy Atkins’ mangoes harvested from Bahia, Brazil. 
Physiologically mature fruits have a 7–9% range, a maximum 
of 20% at the point of maturation completion, attributed to 
the biosynthetic process and degradation of polysaccharides 
accumulated during fruit growth. Consequently, the sampled 
population of ‘Palmer’ and ‘Tommy Atkins’ mangoes pre-
dominantly comprised mature fruits, encompassing stages 
from immaturity to full maturation, reflecting the entire 
developmental spectrum.

The calibration set for TA in ‘Palmer’ and ‘Tommy Atkins’ 
mangoes revealed average values of 0.51% citric acid and 0.50% 
citric acid, respectively (Table 1). ‘Palmer’ mangoes exhibited a 
TA range of 0.19–0.98% citric acid, while ‘Tommy Atkins’ man-
goes displayed a TA range of 0.04–1.12% citric acid, i.e., most 
of the fruit populations are ripe. The researchers observed no 
significant difference (Tukey’s test, 5%) between the TA values of 
the ‘Palmer’ and ‘Tommy Atkins’ mangoes harvested in summer 
and winter: the TA ranges were consistent, measuring 1.1–1.2% 
for ‘Palmer’ and 1.0–1.2% for ‘Tommy Atkins’ mangoes (Fre-
itas et  al., 2022). The TA content in mangoes can be mainly 
attributed to the levels of citric and malic acids, which diminish 
during fruit development due to their utilization as a substrate 
in respiration or their conversion into sugars, enhancing pulp 
stability, flavor, and aroma (Yahia, 2019).

Table 1. Descriptive statistics of calibration and prediction for soluble solids, titratable acidity, and dry matter in ‘Palmer’ and ‘Tommy Atkins’ 
mangoes. 

SD: standard deviation.

Soluble solids (%)
Calibration Prediction

Variety N Mean Range SD N Mean Range SD
Palmer 104 11.17 5.9–19.6 2.97 51 10.00 5.30–16.50 2.80
Tommy Atkins 67 13.59 4.3–22.78 4.59 33 13.73 6.30–21.51 4.34

Titratable acidity (% citric acid)
Calibration Prediction

Variety N Mean Range SD N Mean Range SD
Palmer 77 0.51 0.19–0.98 0.18 38 0.51 0.15–0.98 0.19
Tommy Atkins 80 0.50 0.04–1.12 0.21 40 0.51 0.15–0.92 0.20

Dry matter (%)
Calibration Prediction

Variety N Mean Range SD N Mean Range SD
Palmer 166 19.77 15.72–38.11 2.71 82 20.08 16.74–36.43 2.64
Tommy Atkins 116 15.58 8.78–23.70 3.77 57 15.54 9.56–20.84 3.00
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The prediction sets for ‘Palmer’ and ‘Tommy Atkins’ man-
goes revealed average SS values of 10.00% ± 2.80% and 13.73% 
± 4.34%, respectively (Table 1). The SS range for ‘Palmer’ was 
5.3–16.50%, while ‘Tommy Atkins’ exhibited a range of 6.30–
21.51%. The average TA values in the prediction set for ‘Palmer’ 
and ‘Tommy Atkins’ mangoes were 0.51% ± 0.19% citric acid 
and 0.51% ± 0.20% citric acid, respectively (Table 1). The TA 
value of ‘Palmer’ ranged from 0.15 to 0.98% citric acid and 
that of ‘Tommy Atkins’ ranged from 0.15 to 0.92% citric acid. 
The average DM values were 20.08% ± 2.64% for ‘Palmer’ and 
15.54% ± 3.00% for ‘Tommy Atkins mangoes,’ obtained from 
the prediction set (Table 1). The DM value of ‘Palmer’ ranged 
from 16.74 to 36.43%, while that of ‘Tommy Atkins’ ranged 
from 9.56 to 20.84%.

3.2 Chemometric assessments

Figure 2 shows the mean raw spectra of ‘Palmer’ and ‘Tom-
my Atkins’ mangoes acquired using a portable spectrometer. 
The initial absorption band of the spectrum aligns with the end 
of the visible wavelength region (387–750 nm) with heightened 
absorptions in violet (380–440 nm), green (500–565 nm), and 
red (625–740 nm) spectral regions. This characterizes typical 
color variations in the skins of ‘Palmer’ and ‘Tommy Atkins’ 
mangoes. Notably, both spectra feature a prominent peak at 
672 nm, within the red color range, signifying the presence of 
red pigments including anthocyanins, active compounds in ripe 
fruits. The short-wave near-infrared region (SWNIR) (Subedi 
et al., 2007) from 750 to 1,131 nm reveals a high absorption 
band in the 957–1,014 nm range corresponding to the molecular 
vibrations of water. This aligns with the high moisture content 
in ‘Palmer’ and ‘Tommy Atkins’ mangoes, measured at 79.7 and 
85.8%, respectively. 

Before regression analysis, specific spectral ranges were 
chosen for each quality attribute to evaluate spectral data infor-
mation through PCA (Marques et al., 2016). The ranges 699–999 
nm (Santos Neto et al., 2017), 743–903 nm (Subedi et al., 2012), 
and 699–981 nm (Santos Neto et al., 2017) were selected for 

SS, TA, and DM, respectively, in ‘Palmer’ and ‘Tommy Atkins’ 
mangoes. PCA models for SS (Figure 3), TA (Figure 4), and DM 
(Figure 5) from the best treatment options explained 88–100% 
of data variability, with PC1 and PC2 accounting for 97–100% 
of the variance. 

After spectral transformation (pre-treatment) and explor-
atory and regression analysis of each quality attribute, the best 
prediction results for SS, TA, and DM using SG1 (2+2), SG2 
(5+5), and SG1 (5+5), respectively, were achieved for ‘Palmer’ 
mangoes (Figure 6). In the case of ‘Tommy Atkins’ mangoes, 
the best prediction results for the same sequence of attributes 
were obtained using SG2 (5+5), MSC, and SG2 (2+2), respec-
tively (Figure 7). 

3.3 Soluble solids content

For ‘Palmer’ mangoes, SG1 with a 2+2 smoothing window 
in the 699–999 nm spectral window yielded superior SS pre-
diction results (R²P = 0.69, RMSEP = 1.56%, and SDRP = 1.80), 
generating a calibration model employing 12 latent variables 
(LV), R²C = 0.74, and RMSEcv = 1.97% (Table 2). The 12 LVs were 
selected based on a systematic cross-validation process using 
the modeling algorithm available in the Unscrambler software. 
The criteria for selecting these variables were based on balancing 
the model fit (measured by the coefficient of determination, 
R²) and the root mean square error of calibration (RMSEC). 
Although 12 LVs might seem high for a dataset with hundreds 
of fruits, this number was deemed optimal by the algorithm 
because reducing the number of LVs led to a significant decrease 
in R² and an increase in RMSEC, indicating a loss in the precision 
and reliability of the predictive model. Therefore, the choice of 
12 LVs reflects the need to maintain sufficient complexity to 
capture the relevant variations in the data, ensuring robust and 
high-quality prediction.

For ‘Tommy Atkins’ mangoes, SG2 with a 5+5 smooth-
ing window in the 699–999 nm spectral window yielded en-
hanced SS prediction results (R²P = 0.72, RMSEP = 2.43%, and 
SDRP = 1.85), generating a calibration model with seven LVs,  
R²CV = 0.89, and RMSEcv = 1.73% (Table 2). Also called RPD 
by other researchers, as proposed by Nicolai et al. (2007), the 
SDR parameter was employed to assess models’ performance 
regarding sample variation. Specifically, the values of 1.5 < 
SDR < 2 suggest that the model can distinguish low from high 
response variables, the values of 2 < SDR < 2.5 denote ordinary 
precision, and the values of 2.5 < SDR < upper correspond to 
‘good’ and/or ‘excellent’ accuracy. 

Nicolai et al. (2007) explained that the RPD is defined as the 
ratio of the standard deviation of the response variable to the 
RMSEP or RMSEcv (some authors use the term SDR). Standard 
deviation ratio and ratio of performance to deviation are terms 
used interchangeably to describe the same predictive model’s 
evaluation metric. SDR is defined as the ratio of the standard 
deviation of the response variable to the RMSEP or the RMSEcv. 
Similarly, RPD is described as the ratio of the standard deviation 
of the response variable to the RMSEP or RMSEcv. Although the 
term RPD is more commonly used in some publications, both 
terms refer to the same concept of assessing model accuracy 

Figure 2. Mean raw near-infrared spectra of ‘Palmer’ and ‘Tommy 
Atkins’ mangoes. 
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Figure 3. (A) The principal component analysis results of ‘Palmer’ mangoes’ soluble solids in relative absorbance and (B) with the application 
of the Savitzky–Golay first derivative (2+2); (C) the principal component analysis results of ‘Tommy Atkins’ mangoes’ soluble solids in relative 
absorbance and (D) with the application of the Savitzky–Golay second derivative (5+5).

Figure 4. (A) The principal component analysis results of ‘Palmer’ mangoes’ titratable acidity in relative absorbance and (B) with the application 
of the Savitzky–Golay second derivative (5+5); (C) the principal component analysis results of ‘Tommy Atkins’ mangoes’ titratable acidity in 
relative absorbance and (D) with the application of the multiplicative signal correction. 
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and robustness. Therefore, SDR and RPD can be considered 
synonymous in the literature and within this study.

The RMSEcv value (1.97%) for SS in ‘Palmer’ mangoes sur-
passes that reported by Santos Neto et al. (2017) while utilizing 
a portable instrument (F-750 Felix Instruments), Standard Nor-
mal Variate (SNV), and SG1 in the spectral range of 699–999 
nm, where they reported values of R²cv = 0.87, RMSEcv = 1.39%, 
and SDR = 2.78 for ‘Palmer’ mangoes. Marques et al. (2016) 
while operating MicroNIR 1700 spectrometer and using SNV 
pre-processing in the spectral window of 1,200–2,400 nm ob-
tained R²CV = 0.83 and RMSEcv = 0.88% for the SS of ‘Tommy 
Atkins’ mangoes, values lower than those obtained in the present 
study (R²cv = 0.89 and RMSEcv = 1.73%) for the SS of ‘Tommy 
Atkins’ mangoes. 

For ‘Nam Dok Mai’ mangoes, the SEP values determined 
ranged from 0.9 to 1.2% in the 700–1,100 nm range. This is 
similar to the low RMSEP value found for ‘Tommy Atkins,’ 
mangoes where 0.92% was obtained in the 950–1650 nm range 
by Marques et al. (2016). 

3.4 Titratable acidity

The SG2 pre-treatment with a 5+5 smoothing window using 
the 744–903 nm spectral window yielded prediction results for 
TA in ‘Palmer’ mangoes (R²P = 0.56, RMSEP = 0.14%, and SDRP 
= 1.48) (Table 3), generating a calibration model with seven LVs, 
R²c = 0.64, and RMSEcv = 0.13%. In the case of ‘Tommy Atkins’ 
mangoes, the best TA prediction model (R²P = 0.59, RMSEP = 
0.13%, and SDRP = 1.55) occurred with MSC pre-processing em-
ploying five LVs, resulting in R²c = 0.63 and RMSEcv = 0.14% in 
the 744–903 nm spectral window (Table 3). These models exhibit 
low accuracy (Nicolai et al., 2007), a common challenge faced 
while predicting acidity due to its typically low content in fruits, 
usually < 1%. In this study, the average TA was approximately 
0.51% citric acid in the evaluated populations ranging from a 
minimum of 0.04% to a maximum of 1.12%. The difficulty in 
accurately predicting extreme acidity values is acknowledged by 
Nordey et al. (2017) who reported acidity as being influenced 
by ripening and environmental conditions, impacting the ratio 
of two main organic acids of mangoes (malic and citric acids). 

Figure 5. (A) The principal component analysis results of ‘Palmer’ mangoes’ dry matter in relative absorbance and (B) with the application of 
the Savitzky–Golay first derivative (5+5); (C) the principal component analysis results of ‘Tommy Atkins’ mangoes’ dry matter in relative absor-
bance and (D) with the application of the Savitzky–Golay second derivative (2+2). 
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Figure 6. (A) Raw near-infrared spectra collected for the soluble solids of ‘Palmer’ mangoes and (B) with the application of the Savitzky–Golay 
first derivative (2+2); (C) raw near-infrared spectra collected for the titratable acidity of ‘Palmer’ mangoes and (D) with the application of the 
Savitzky–Golay second derivative (5+5); (E) raw near-infrared spectra collected for the dry matter of ‘Palmer’ mangoes and (F) with the appli-
cation of the Savitzky–Golay first derivative (5+5).
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Figure 7. (A) Raw near-infrared spectra collected for the soluble solids of ‘Tommy Atkins’ mangoes and (B) with the application of the Savit-
zky–Golay second derivative (5+5); (C) raw near-infrared spectra collected for the titratable acidity of ‘Tommy Atkins’ mangoes and (D) with 
the application of the multiplicative signal correction; (E) raw near-infrared spectra collected for the dry matter of ‘Tommy Atkins’ mangoes and 
(F) with the application of the Savitzky–Golay second derivative (5+5).
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Marques et  al. (2016) obtained models for ‘Tommy Atkins’ 
mangoes utilizing SNV pre-processing, reporting R²P = 0.50 and 
RMSEP = 0.17%. Schmilovitchs et al. (2000) analyzing ‘Tommy 
Atkins’ mangoes within the TA range of 0.15–0.85% reported 
SEP = 0.22% and R²P = 0.40.

3.5 Dry matter

In ‘Palmer’ mangoes, superior DM results were achieved 
with SG1 using a 5+5 smoothing window in the 699–981 nm 
spectral window: a calibration model with 11 LVs, R²c = 0.78, 
and RMSEC = 0.88% and a prediction model with R2

P = 0.83, 

RMSEP = 0.95, and SDRP = 2.44 (Table 4). For ‘Tommy Atkins’ 
mangoes, optimal DM results were obtained with SG2 using a 
2+2 smoothing window in the 699–981 nm spectral window: 
a calibration model with seven LVs, R²c = 0.87, and RMSEC = 
1.37% and a prediction model with R2

P = 0.79, RMSEP = 1.36, 
and SDRP = 2.00 (Table 4).

The DM models demonstrated superiority over SS and 
TA, particularly in terms of SDR, indicating enhanced accu-
racy in providing gross quantitative predictions (Nicolai et al., 
2007). This could be attributed to the absorption of water and 
carbohydrates in the 960–990 nm range, as during maturation, 

Table 2. Calibration and prediction results for soluble solids contents (%) in ‘Palmer’ and ‘Tommy Atkins’ mangoes.

SDc: standard deviation of calibration; R2
c: coefficient of determination for calibration; R2

cv: coefficient of determination for cross-validation; RMSEc: square root of the mean error of ca-
libration; RMSEcv: square root of the mean error of cross-validation; SDRc: standard deviation ratio of calibration; SDp: standard deviation of prediction; R2

p: coefficient of determination 
for prediction; RMSEp: square root of the mean error of prediction; SEP: standard error of prediction; SDRp: standard deviation ratio of prediction. ARMSEP revised by bias; BSavitzky–
Golay first derivative (SG1); CSavitzky–Golay second derivative (SG2); Dmultiplicative signal correction (MSC); ESDRC = (SDc/RMSEcv); FSDRP = (SDP/RMSEcv).

cv. Data treatment Range, λ 
(nm) LV

Calibration model Prediction model
SDc R2

c R2
cv RMSEc RMSEcv

ESDRc SDP R2
p

ARMSEP SEP FSDRP

Palmer BSG1 2+2 699–999 12 3.02 0.74 0.55 1.48 1.97 1.49 2.82 0.69 1.56 1.57 1.80
Palmer CSG2 2+2 699–999 12 3.02 0.85 0.55 1.21 1.95 1.49 2.82 0.70 1.56 1.58 1.79
Palmer DMSC 699–999 12 3.02 0.74 0.59 1.52 1.91 1.56 2.82 0.67 1.63 1.64 1.73
Tommy Atkins SG2 5+5 699–999 7 4.61 0.89 0.86 1.46 1.73 2.66 4.41 0.72 2.43 2.38 1.85
Tommy Atkins SG1 5+5 699–999 7 4.48 0.87 0.84 1.70 1.81 2.48 4.41 0.70 2.45 2.47 1.79
Tommy Atkins MSC 699–999 7 4.63 0.87 0.83 1.65 1.89 2.45 4.41 0.69 2.46 2.49 1.77

Table 3. Calibration and prediction results for titratable acidity (% citric acid) in ‘Palmer’ and ‘Tommy Atkins’ mangoes.

cv. Data treatment Range, λ 
(nm) LV

Calibration model Prediction model
SDc R2

c R2
cv RMSEc RMSEcv

ESDRc SDP R2
p

ARMSEP SEP FSDRP

Palmer BSG2 5+5 744–903 7 0.19 0.64 0.51 0.11 0.13 1.44 0.195 0.56 0.14 0.13 1.48
Palmer CSG2 2+2 744–903 4 0.19 0.54 0.40 0.12 0.14 1.32 0.195 0.57 0.14 0.13 1.47
Palmer DMSC 744–903 6 0.18 0.60 0.48 0.11 0.13 1.44 0.195 0.51 0.15 0.14 1.41
Tommy Atkins MSC 744–903 5 0.22 0.63 0.59 0.13 0.14 1.54 0.205 0.58 0.13 0.13 1.55
Tommy Atkins SG2 5+5 744–903 6 0.21 0.77 0.65 0.10 0.12 1.70 0.205 0.56 0.15 0.14 1.50
Tommy Atkins SG2 2+2 744–903 3 0.21 0.63 0.59 0.13 0.14 1.53 0.205 0.48 0.16 0.15 1.38

SDc: standard deviation of calibration; R2
c: coefficient of determination for calibration; R2

cv: coefficient of determination for cross-validation; RMSEc: square root of the mean error of ca-
libration;  RMSEcv: square root of the mean error of cross-validation; SDRc: standard deviation ratio of calibration; SDp: standard deviation of prediction; R2

p: coefficient of determination 
for prediction; RMSEp: square root of the mean error of prediction; SEP: standard error of prediction; SDRp: standard deviation ratio of prediction. ARMSEP revised by bias; BSavitzky–
Golay first derivative (SG1); CSavitzky–Golay second derivative (SG2); Dmultiplicative signal correction (MSC); ESDRC = (SDc/RMSEcv); FSDRP = (SDP/RMSEcv).

Table 4. Calibration and prediction results for dry matter (%) in ‘Palmer’ and ‘Tommy Atkins’ mangoes.

cv. Data treatment Range λ 
(nm) LV

Calibration model Prediction model
SDc R2

c R2
cv RMSEc RMSEcv

DSDRc SDP R2
P

ARMSEP SEP ESDRP

Palmer BSG1 5+5 699–981 11 1.90 0.78 0.75 0.88 0.96 1.98 2.23 0.83 0.95 0.91 2.44
Palmer CSG2 5+5 699–981 8 1.90 0.75 0.69 0.94 1.04 1.82 2.23 0.81 1.01 0.98 2.27
Palmer SG1 2+2 699–981 12 1.90 0.81 0.75 0.83 0.95 1.99 2.23 0.81 1.01 0.99 2.25
Tommy Atkins SG2 2+2 699–981 7 3.79 0.87 0.80 1.37 1.73 2.19 3.024 0.79 1.54 1.51 2.00
Tommy Atkins SG2 5+5 699–981 7 3.69 0.84 0.79 1.49 1.67 2.21 3.024 0.76 1.61 1.59 1.91
Tommy Atkins SG1 2+2 699–981 6 3.75 0.81 0.78 1.62 1.77 2.12 3.024 0.69 1.95 1.87 1.62

SDc: standard deviation of calibration; R2
c: coefficient of determination for calibration; R2

cv: coefficient of determination for cross-validation; RMSEc: square root of the mean error of 
calibration;  RMSEcv: square root of the mean error of cross-validation; SDRc: standard deviation ratio of calibration; SDp: standard deviation of prediction; R2

p: coefficient of deter-
mination for prediction; RMSEp: square root of the mean error of prediction; SEP: standard error of prediction; SDRp: standard deviation ratio of prediction. ARMSEP revised by bias; 
BSavitzky–Golay first derivative (SG1); CSavitzky–Golay second derivative (SG2); DSDRc = (SDc/RMSEcv); ESDRP = (SDP/RMSEcv).
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starch and DM accumulate and the moisture content gradually 
decreases (Santos Neto et al., 2017).

Mesocarp starch transforms into soluble sugars during 
mango ripening, with the total carbohydrate content (total 
starch and SS) measured by the DM serving as a suitable pa-
rameter connected to horticultural maturity and representing 
the final quality for consumption. Freitas et al. (2022) found a 
positive linear relationship between ‘Palmer’ and ‘Tommy At-
kins’ mangoes’ DM content at harvest and consumer satisfaction, 
suggesting that higher DM content results in increased overall 
satisfaction. Thus, mangoes’ DM content serves as a valuable 
harvest index and guide for assessing the consumption quality 
of ripe fruits. 

4 CONCLUSIONS
This study reaffirmed the considerable potential of NIR 

spectroscopy in assessing the internal quality of mangoes for 
precise harvesting decisions. NIR spectrometry proved effec-
tive in developing robust prediction models for DM content.  
However, the accuracy of TA prediction models for both 
‘Palmer’ and ‘Tommy Atkins’ mangoes is relatively low. Nev-
ertheless, technology holds promise for non-destructive, field-
based mango quality predictions, contributing to informed 
decision-making.
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